1.sdiԴ??
2.FPGA高端项目:6G-SDI 视频编解码,提供工程源码和技术支持
3.Artix7系列FPGA实现SDI视频编解码+图像缩放,基于GTP高速接口,提供2套工程源码和技术支持
4.FPGA高端项目:SDI 视频+音频编解码,提供工程源码和技术支持
5.Artix7系列FPGA实现SDI视频编解码+UDP以太网传输,基于GTP高速接口,arkime源码编译提供工程源码和技术支持
6.FPGA高端项目:FPGA基于GS2971+GS2972架构的SDI视频收发+HLS多路视频融合叠加,提供1套工程源码和技术支持
sdiԴ??
FPGA实现G-SDI视频编解码支持4K帧,提供2套完整工程源码、开发板及技术支持方案一:Zynq UltraScale+ MPSoC XCZU4EV方案
使用高端Xilinx Zynq UltraScale+系列FPGA,该方案采用UHD-SDI GT IP和SMPTE UHD-SDI RX SUBSYSTEM,接收端通过自研G-SDI彩条发生器,通过均衡处理转为差分信号,然后解码并支持后续处理。发送过程涉及编码、解串、均衡和BNC输出。适用于高速接口和图像处理领域。方案二:Kintex7-T方案
低端Kintex7-T方案采用GTX高速接口和SMPTE UHD-SDI IP,接收端同样使用彩条发生器,解串后数据通过ILA观测供用户灵活处理。发送端直接生成彩条视频并进行编码。此方案灵活性高,但FPGA型号要求较低。资源推荐
我的主页有FPGA GT高速接口和SDI编解码专栏,包含不同系列FPGA的实例代码,适合学生和工程师学习。设计细节
工程源码1提供详细框图和Vivado工程,支持G-SDI彩条发生器和硬件均衡。
源码2包含自定义的GTX解串和SMPTE UHD-SDI解码,支持用户数据处理。
上板调试与支持
所需硬件包括FPGA开发板、G-SDI信号发生器、HDMI转换器和4K显示器。提供完整工程源码和详细教程以协助调试。福利
完整工程代码可通过网盘链接获取,由于文件过大,无法直接邮件发送。FPGA高端项目:6G-SDI 视频编解码,提供工程源码和技术支持
FPGA高端项目:6G-SDI 视频编解码,提供工程源码和技术支持
前言:Xilinx系列FPGA实现SDI视频编解码的方案主要有两种:一是使用专用编解码芯片,如GS和GS,优点是简单,但成本较高;二是苹果越狱插件源码使用FPGA实现,通过合理利用FPGA资源实现解串,操作难度稍大,对FPGA水平要求较高。UltraScale GTH适用于Xilinx UltraScale系列FPGA,支持更高线速率、更多协议类型、更低功耗和更高带宽。Xilinx还提供了SDI视频编解码的专用IP,如SMPTE UHD-SDI,支持多种视频格式编解码。
设计详情:本文采用Xilinx 7系列Kintex7型号的FPGA实现6G-SDI 视频编解码。设计包括编码和解码两部分,即视频发送和接收。6G-SDI 视频接收过程:使用标准6G-SDI摄像头,通过GVA芯片均衡EQ,然后使用GTX原语解串,将高速串行SDI视频解为并行数据。接着,调用Xilinx的SMPTE UHD-SDI IP核进行视频解码。视频发送过程:使用静态彩条作为源,调用SMPTE UHD-SDI IP核进行编码,然后使用GTX原语串化视频数据。
系统框图:参考了Xilinx官方设计文档,框图包含GVA均衡EQ、GTX时钟配置与控制、SMPTE UHD-SDI IP核等关键组件。
GTX 与 SMD UHD-SDI IP:调用GTX原语进行SDI视频解串与串化,使用SMPTE UHD-SDI IP核实现SDI视频编解码。
输出展示:接收端接收6G-SDI视频后,通过ILA观察数据正确性;发送端输出静态彩条视频。
Vivado工程详解:开发板为Xilinx 7系列Kintex7,使用Vivado.2,输入为6G-SDI摄像头,输出为静态彩条视频。工程代码架构与资源功耗预估。
工程移植说明:不同vivado版本需调整工程保存或升级vivado版本。FPGA型号不一致时需更改型号并升级IP。
上板调试:需要FPGA开发板、6G-SDI相机、BNC转SMA线、SDI转HDMI盒子和HDMI显示器。提供完整工程源码和技术支持。
福利:工程代码以某度网盘链接方式发送。图书整理app源码
Artix7系列FPGA实现SDI视频编解码+图像缩放,基于GTP高速接口,提供2套工程源码和技术支持
本文介绍了使用Xilinx Artix7系列FPGA实现SDI视频编解码与图像缩放的过程,包括硬件设计、工程源码和技术支持等关键环节。 Artix7系列FPGA基于GTP高速接口,实现SDI视频编解码+图像缩放,提供2套工程源码和技术支持。设计概述
在FPGA领域,SDI视频编解码有两种主要方案:一种是利用专用芯片,如GS接收器和GS发送器,操作简单但成本较高;另一种是采用FPGA逻辑资源实现SDI编解码,利用Xilinx的GTP/GTX资源解串,SMPTE SDI资源进行编解码。本设计综合了这两种方案的优点,既合理利用了FPGA资源,也满足了对技术实现的灵活性需求。工程概述
本设计基于Xilinx Artix7系列FPGA,通过BNC座子连接同轴SDI视频,利用Gva芯片将SDI信号转换为差分信号,并通过GTP资源实现串行到并行转换。随后,使用SMPTE SDI IP核解码BT视频,输出BT数据。对于图像处理,设计了支持任意比例缩放的纯Verilog图像缩放模块,并使用FDMA图像缓存方案在DDR3中实现三帧缓存,支持HDMI或SDI输出。输出方式
设计提供了HDMI和SDI两种输出方式。在HDMI输出模式下,图像缩放后通过RGB转HDMI模块转换为HDMI视频,并通过HDMI显示器显示。在SDI输出模式下,将缩放后的BT数据编码为SDI视频,通过Gv芯片转换后输出。本设计提供了2套工程源码,分别针对3G-SDI转HDMI和3G-SDI转HD-SDI应用。源码详解
源码包含硬件设计和软件实现的详细信息。工程源码1针对3G-SDI转HDMI应用,包含SDI视频解串、解码、图像缩放、缓存及HDMI输出等关键步骤。lovewall2.2源码工程源码2则专注于3G-SDI转HD-SDI应用,流程包括SDI解串、解码、图像缩放、缓存及SDI输出。移植与调试
针对不同FPGA型号和版本的移植,提供了详细的指导。对于vivado版本不一致、FPGA型号不同等问题,文章给出了相应的解决策略,包括文件另存为、版本升级及IP升级等步骤。演示与验证
通过上板调试和演示,展示了设计的实操效果,包括使用工程1实现的3G-SDI输入图像缩放转HDMI输出的视频演示。资源获取
为了方便读者获取工程代码,文章提供了某度网盘链接的获取方式。同时,考虑到不同用户的需求,还提供了进一步的定制服务和****,以适应不同场景下的需求。FPGA高端项目:SDI 视频+音频编解码,提供工程源码和技术支持
FPGA高端项目:SDI 视频+音频编解码,提供工程源码和技术支持
本文详述了一款使用Xilinx 7系列Kintex7--xc7ktffg-2型号FPGA实现的3G-SDI视频+音频编解码方案,涵盖了编码、音频解码及视频解码过程,并提供了完整的工程源码及技术支持。该设计适用于需要处理SDI视频与音频的项目,如医疗、军工领域或图像处理等高速接口相关应用。
设计分为三部分:3G-SDI视频编码、3G-SDI音频解码和3G-SDI视频解码,整合为一个工程,包括视频发送和视频+音频接收功能。在视频接收阶段,首先通过GVA芯片进行均衡EQ处理,随后使用Xilinx官方GTX原语进行串并转换,调用SMPTE SD/HD/3G-SDI IP核实现解码。音频解码则采用UHD-SDI Audio IP核,最后将音频数据转换为i2s格式并输出到扬声器。视频发送部分,使用静态彩条作为源数据,通过SMPTE SD/HD/3G-SDI IP核编码,拼赚模式源码并由GTX进行串化,GV芯片增强驱动,最终通过SDI转HDMI盒子显示。
设计参考了Xilinx官方文档,确保了在不同输入状态下的线速率切换,确保了GTX的稳定运行。IP配置简洁明了,支持SD-SDI、HD-SDI和3G-SDI的编解码。音频解码后输出至i2s模块,再通过TLVAIC芯片播放SDI音频。视频发送通过静态彩条生成,经过编码、串化及驱动增强后,通过SDI接口输出至显示器。
该设计在Vivado.2版本下实现,提供了一套完整的工程源码,供用户移植及开发使用。同时,作者还提供了相关的GT高速接口解决方案,包括基于A7系列FPGA的GTP方案、K7或ZYNQ系列FPGA的GTX方案、KU或V7系列FPGA的GTH方案及KU+系列FPGA的GTY方案。
为了帮助用户更好地理解和应用该设计,作者在文章末尾提供了获取完整工程源码及技术支持的方式。请注意,由于代码文件较大,无法通过邮箱发送,而是采用百度网盘链接方式提供下载。请耐心阅读至文章结尾,按照指引获取资源。
特别提醒:本工程及其源码仅供个人学习和研究使用,禁止用于商业用途。如在使用过程中遇到问题或有任何疑问,请随时联系博主或关注官方渠道,获取技术支持。本设计及源码包含了作者和网络资源的贡献,若有冒犯之处,请私信博主批评指正。
Artix7系列FPGA实现SDI视频编解码+UDP以太网传输,基于GTP高速接口,提供工程源码和技术支持
在FPGA领域,实现SDI视频的编解码以及通过UDP以太网传输,是一个技术含量颇高的项目,本文将详细介绍如何使用Artix7系列FPGA完成这一任务,包括硬件设计、软件编码、以及关键技术点的解析。
首先,我们考虑使用两种实现SDI视频编解码的方法。第一种方法采用专用的编解码芯片,如GS用于接收,GS用于发送,其优点在于硬件简单,但成本较高。第二种方法则是利用Xilinx系列FPGA的资源,通过GTP/GTX接口实现SDI信号的高速串并转换,通过Xilinx特有的SMPTE SDI IP核进行SDI视频的编解码,这样可以更合理地利用FPGA的资源。本博提供了一套解决方案,包括硬件开发板、工程源码以及相关技术支持。
硬件设计方面,我们基于Xilinx的Artix7系列FPGA开发板,实现了3G-SDI视频的输入,通过Gva芯片将单端信号转换为差分信号并进行均衡处理。随后,利用GTP接口将差分信号进行解串,再通过SMPTE SDI IP核解码SDI信号为BT格式。解码后的BT视频信号经过转RGB处理,然后通过自研的纯Verilog图像缩放模块将x的视频缩放到x。缩放后的视频数据被缓存在DDR3内存中,以实现三帧缓存。最后,通过自定义的UDP视频发送模块,将视频数据编码后通过以太网接口输出,PC端通过QT上位机接收和显示视频内容。这一过程涵盖了SDI到网络的完整转换流程。
为了提供更广泛的支持,本博还提供了大量的工程源码、技术方案以及移植说明,包括SDI编解码、以太网通信、图像缩放等关键部分。读者可以根据自己的需求选择合适的方案进行学习和应用。在移植和使用过程中,需要注意的细节包括FPGA型号匹配、DDR配置、以及IP升级等。此外,本博还提供了一套包含工程源码的资料包,可供有需要的读者获取。
综上所述,本文详细介绍了使用Artix7系列FPGA实现SDI视频编解码+UDP以太网传输的全过程,从硬件设计到软件编码,包括关键技术点的解析和实际应用的示例,为读者提供了一套完整的解决方案。无论是学习FPGA技术,还是在实际项目中应用,本文提供的信息都将是一个宝贵资源。
FPGA高端项目:FPGA基于GS+GS架构的SDI视频收发+HLS多路视频融合叠加,提供1套工程源码和技术支持
FPGA高端项目:FPGA基于GS+GS架构的SDI视频收发+HLS多路视频融合叠加,提供1套工程源码和技术支持
前言
在FPGA的SDI视频编解码领域,有两种主要方案:一是采用专用编解码芯片(如GS接收器与GS发送器),其优点是简化设计,易于实现,但成本相对较高;二是利用FPGA的逻辑资源自定义SDI编解码,通过Xilinx系列FPGA的GTP/GTX资源进行串行/并行转换,并利用SMPTE SDI资源完成SDI编码与解码,此方案的优势在于高效利用FPGA资源,但对开发者的技术要求更高。在这里,我们提供了一套针对Xilinx Zynq FPGA的解决方案,包括硬件开发板、工程源码与技术支持。
设计概述
本设计基于Xilinx Zynq FPGA,采用GS作为SDI视频接收器,将同轴串行SDI视频解码为BT格式,并转换为HDMI输出。输入源为HD-SDI相机,支持SD-SDI、HD-SDI、3G-SDI等多种格式。解码后的视频经BT转RGB模块转换为RGB格式,随后通过HLS多路视频融合叠加技术,叠加第二路视频,并进行缩放、透明度配置等操作,最终输出为3G-SDI视频格式。
实现流程
1. 视频解码:使用GS接收HD-SDI信号,并解码为BT格式视频。
2. 视频转换:将BT格式视频转换为RGB格式,以便后续处理。
3. 多路视频融合叠加:通过HLS技术,将第二路视频进行缩放、透明度配置后与第一路视频融合叠加。
4. 编码输出:使用GS编码器将处理后的RGB视频转换为SDI信号输出,通过SDI转HDMI盒子展示在显示器上。
工程源码与技术支持
本项目提供完整工程源码与技术支持,包括硬件设计、软件开发、上板调试等全过程。源码涵盖硬件配置、视频处理算法、图像缓存、多路视频融合叠加、编码输出等关键环节。此外,还提供详细的工程设计文档,以便用户快速理解并移植至自定义项目中。
注意事项与移植指南
项目移植时需注意FPGA型号、开发环境版本及硬件配置差异。对于不同的FPGA型号,可能需要调整相应的硬件配置和IP锁。此外,当开发环境版本不一致时,需确保与工程源码版本兼容,可通过升级开发环境或调整工程配置解决。对于纯FPGA项目移植至Zynq系列FPGA,需添加Zynq软核。
总结
本项目旨在提供一套完整的FPGA SDI视频处理解决方案,涵盖硬件设计、软件实现、工程源码与技术支持,适用于毕业设计、项目开发,以及医疗、军工等领域的图像处理应用。通过提供详细的工程源码和指导文档,帮助用户快速掌握SDI视频收发与多路视频融合叠加技术。
Artix7系列FPGA实现SDI视频编解码,基于GTP高速接口,提供3套工程源码和技术支持
Artix7系列FPGA实现SDI视频编解码,基于GTP高速接口,提供3套工程源码和技术支持
前言
本文介绍了如何使用FPGA实现SDI视频的编解码,提出了两种实现方案:一是使用专用编解码芯片,优点是简单,但成本较高;二是使用FPGA逻辑资源实现,合理利用了FPGA资源,但操作难度较大。本方案提供了硬件开发板、工程源码等资源,适用于Xilinx系列FPGA的Artix7低端系列。
工程概述
基于Xilinx的Artix7系列FPGA开发板,实现SDI视频编解码,支持输入3G-SDI相机或HDMI转3G-SDI盒子,支持自适应输入HD/SD/3G-SDI格式。SDI视频经过Gva芯片转换为差分信号,通过GTP高速接口进行解串,使用Xilinx的SMPTE SDI IP核解码,并输出BT视频。对于RGB视频,本设计提供两种输出方式:一种是通过HDMI发送模块输出到HDMI显示器;另一种是通过RGB转BT模块后,使用SMPTE SDI IP核编码输出SDI视频。
针对不同需求,提供了三种工程源码:一种是不使用缓存的HDMI输出方案,适用于低延时场景;另一种是使用缓存的HDMI输出方案,适用于需要视频缓存的场景;最后一种是使用缓存的SDI输出方案,适用于SDI转SDI的场景。每种方案都有详细的工程源码和Block Design设计。
为了帮助读者理解和移植工程,还提供了详细的移植说明和上板调试验证步骤。此外,本博客还提供了SDI视频编解码的专栏链接,包括基于GS/GS的方案、基于GTP/GTX资源的方案,以及针对Kintex、Zynq系列FPGA的应用案例。
为了满足不同用户的需求,本博客还提供了工程代码的获取方式,以及针对不同场景的解决方案。同时,为了提供更丰富和个性化的服务,本博主还提供了额外的服务选项,以适应不同用户的具体需求。
FPGA高端项目:FPGA实现SDI视频编解码工程解决方案,提供3套工程源码和技术支持
FPGA高端项目:实现SDI视频编解码,提供3套工程源码与技术支持 本文详细阐述了如何使用Xilinx Kintex7-T FPGA开发板进行SDI视频编解码,设计过程涵盖了从输入高清SDI信号,通过GTX解串、SMPTE SDI解码,到最终输出HDMI或SDI视频的全过程。三种不同的工程源码分别对应不同的输出模式:HDMI输出(工程1)、HD-SDI模式(工程2)和3G-SDI模式(工程3),以适应不同的项目需求。工程1:适用于SDI转HDMI,分辨率为x@Hz,适合于需要高清输出的项目。
工程2:针对SDI转SDI,分辨率为x@Hz,适合于需要直接SDI传输的项目,但需注意x@Hz对显示器有一定要求。
工程3:适用于SDI转3G-SDI,同样支持x@Hz,适用于需要高带宽传输的场景。
设计中,使用了FPGA的GTP/GTX资源进行解串,SMPTE SDI IP核进行编码,配合BT转RGB模块转换视频格式,以及图像缓存和Gv驱动器等模块,确保视频处理的稳定性和兼容性。此外,还提供了完整的工程源码和设计文档,以及针对FPGA编解码SDI视频的培训计划,以帮助学生、研究生和在职工程师快速上手和开发相关项目。 要获取这些资源,请查看文章末尾的获取方式。注意,所有代码仅供学习研究,商业用途需谨慎,且部分代码基于公开资源,如有版权问题,请通过私信沟通。2024-12-22 17:16
2024-12-22 16:39
2024-12-22 16:28
2024-12-22 16:07
2024-12-22 15:49
2024-12-22 14:40