【批量转码源码】【云资源播放源码】【知识付款源码】unity 源码解读

2024-12-23 03:04:28 来源:数字化校园 源码 分类:百科

1.《Unity 3D 内建着色器源码剖析》第七章 Unity3D全局光照和阴影
2.Unity JSON编码解码 之 LitJson 深度剖析
3.Unity JSON编码解码之LitJson 深度剖析
4.UGUI源码介绍
5.unity urp源码学习一(渲染流程)
6.Unity3D MMORPG核心技术:AOI算法源码分析与详解

unity 源码解读

《Unity 3D 内建着色器源码剖析》第七章 Unity3D全局光照和阴影

       在Unity 3D中,码解全局光照和阴影是码解实现逼真渲染的重要手段。全局光照分为烘焙式和实时两种方式。码解静态物体通过烘焙式全局照明(Baked GI)处理,码解预先计算间接照明并存储,码解而动态物体则通过光探针获取静态物体的码解批量转码源码反射光。引擎提供了点光源、码解聚光灯、码解有向平行光源和区域面光源等光源类型,码解其中环境光源与天空盒系统关联,码解可模拟日出日落效果。码解

       实时光照模式下的码解光源仅产生直接照明,不涉及间接照明,码解但在Unity 3D的码解Lighting设置中,勾选Realtime Global Illumination选项,码解可实现全局照明,主要适用于主机平台游戏。烘焙式光照贴图通过预先计算并存储直接和间接照明信息,节省运行时计算,但内存占用较大。

       混合光照模式允许光源实时调整属性,提供动态照明,包括Baked Indirect(仅预计算间接照明)、Shadowmask(预计算静态阴影)和Subtractive(烘焙光源信息)等。其中,Shadowmask存储静态阴影信息,云资源播放源码Subtractive模式下动态阴影实时投射到静止物体。

       光探针技术弥补了光照贴图对动态物体的限制,通过预计算并插值光照信息,提供更真实的动态物体照明效果。然而,光探针有其局限性,如不适用于大物体内部和大凹面表面。此外,还有反射用光探针,用于环境映射。

       渲染阴影功能通过光源空间和屏幕空间确定阴影区域,使用阴影贴图(如阴影映射)和层叠式阴影贴图技术来减少透视走样的问题,提高渲染效率和精度。通过这些技术,Unity 3D能为游戏场景提供丰富多样的光照效果和阴影细节。

Unity JSON编码解码 之 LitJson 深度剖析

       JSON,即JavaScript Object Notation,是一种轻量级的数据交换格式,它基于ECMAScript标准,以文本形式表示数据,易于人读和机器解析,提高网络传输效率。基本数据类型包括Boolean、Double、Float、知识付款源码Int、Long和String,而Object和Array则作为容器,可嵌套其他类型的数据。

       编码(序列化)过程是将编程语言中的数据对象转换为JSON文本,解码(反序列化)则是解析JSON文本,识别数据类型,如识别花括号{ }表示对象,方括号[]表示数组。Unity C#中, LitJson库常用于处理JSON的编码和解码。

       在Unity项目中使用LitJson,步骤简单:首先,将库下载并添加到项目中;然后,定义一个测试数据对象,如GameItem,进行编码和解码操作。编码时,使用JsonMapper的ToJson方法将对象转换为Json String;解码时,通过JsonMapper的ToObject方法将JsonText.txt中的文本解析为JsonData对象,进而访问其中的数据。

       LitJson的核心源码分析,JsonData是其核心数据结构,它以JsonType枚举表示数据类型,存储相应类型的源码淘宝客php数据。Object和Array分别用Dictionary和List作为容器,通过重载[]操作符和类型强转操作符,实现了灵活的数据访问和转换。JsonWrapper则负责解析JSON字符串,生成对应的Json对象。

Unity JSON编码解码之LitJson 深度剖析

       JSON在游戏开发中是一种序列化/反序列化常用的技术,把游戏相关的数据,如地图组成,通过JSON编码,序列化成JSON文本,传输或存储, 要使用的时候再通过JSON技术把文本解析成数据对象,在代码中使用。本文将从以下几个方面详细的深度剖析JSON与LitJson库的编码解码:

       (1)什么是JSON; (2)Unity如何使用LitJson; (3)LitJson核心源码分析;

       1: 什么是JSON

       JSON(JavaScript Object Notation, JS对象简谱)是一种轻量级的数据交换格式。它是基于 ECMAScript(European Computer Manufacturers Association, 欧洲计算机协会制定的js规范)的一个子集,采用完全独立于编程语言的文本格式来存储和表示数据。简洁和清晰的层次结构使得 JSON 成为理想的数据交换语言。 易于人阅读和编写,同时也易于机器解析和生成,并有效地提升网络传输效率。JSON 格式中定义的数据类型包括: Object, Array, Boolean, Double, Float, Int, Long, String 等。其中, Object 类似于C#的字典,Array 类似于 C# 的 List,而其他数据类型则直接映射到 C# 的对应类型。

       2: Unity中如何使用LitJson

       使用 LitJson 在 Unity 项目中非常简单。操作步骤包括: 创建标准 Unity 项目,下载 LitJson 代码库,编写测试节点以讲解 LitJson 库的湖南玩呗源码使用,并创建测试的 Json 文本资源。编码时,定义数据对象并初始化数据,使用 JsonMapper 的 ToJson 方法将对象转化为 JSON 字符串。解码时,从文本资源加载 JSON 字符串,使用 JsonMapper 的 ToObject 方法将字符串转化为数据对象,从而访问和使用 JSON 数据。

       3:LitJson核心源码分析

       LitJson 实现了 JSON 的简单且高效的编码解码功能。其核心在于定义了 JsonData 数据结构,用于表示 JSON 中的任何数据类型,包括基本数据类型和容器类型(如 Object 和 Array)。JsonData 结构内部使用枚举 JsonType 来标识数据类型,并通过 Dictionary 和 List 分别存储 Object 和 Array 的元素。通过重载 [] 操作符,JsonData 提供了方便的容器访问方式。同时,LitJson 通过类型强转操作符使得基本数据类型可以直接转换为 JsonData,简化了 JSON 数据的处理。解析 JSON 字符串时,LitJson 通过解析文本内容并生成对应的数据结构。要深入理解 LitJson 的实现细节,建议阅读源码。

UGUI源码介绍

       本文提供对Unity UI系统(UGUI)源码的概览,内容主要来自官方文档。

       UGUI主要由EventSystem和UI两部分构成。

       EventSystem部分包含输入模块和射线投射器。输入模块用于配置事件系统的主要逻辑,提供不同平台的开箱即用选项,支持各类输入系统如触控、控制器、键盘和鼠标,并将事件分发至对应组件。射线投射器则用于检测事件位置,决定事件传递至的UI元素。

       UI部分结构相对复杂,包含多个类和接口,如IMaterialModifier和IndexedSet等。IMaterialModifier接口允许修改用于渲染的Material,IndexedSet是一种结合List和Dictionary实现的自定义容器,提供快速移除和插入元素的功能,但牺牲了顺序和序列化的友好性。

       总之,UGUI源码通过模块化设计和接口定义,为开发者提供了丰富的UI构建和事件处理能力。

unity urp源码学习一(渲染流程)

       sprt的一些基础:

       绘制出物体的关键代码涉及设置shader标签(例如"LightMode" = "CustomLit"),以确保管线能够获取正确的shader并绘制物体。排序设置(sortingSettings)管理渲染顺序,如不透明物体从前至后排序,透明物体从后至前,以减少过绘制。逐物体数据的启用、动态合批和gpuinstance支持,以及主光源索引等配置均在此进行调整。

       过滤规则(filteringSettings)允许选择性绘制cullingResults中的几何体,依据RenderQueue和LayerMask等条件进行过滤。

       提交渲染命令是关键步骤,无论使用context还是commandbuffer,调用完毕后必须执行提交操作。例如,context.DrawRenderers()用于绘制场景中的网格体,本质上是执行commandbuffer以渲染网格体。

       sprt管线的基本流程涉及context的命令贯穿整个渲染流程。例如,首次调用渲染不透明物体,随后可能调用渲染半透明物体、天空盒、特定层渲染等。流程大致如下:

       多相机情况也通过单个context实现渲染。

       urp渲染流程概览:

       渲染流程始于遍历相机,如果是游戏相机,则调用RenderCameraStack函数。此函数区分base相机和Overlay相机:base相机遍历渲染自身及其挂载的Overlay相机,并将Overlay内容覆盖到base相机上;Overlay相机仅返回,不进行渲染操作。

       RenderCameraStack函数接受CameraData参数,其中包含各种pass信息。添加pass到m_ActiveRenderPassQueue队列是关键步骤,各种pass类实例由此添加至队列。

       以DrawObjectsPass为例,其渲染流程在UniversialRenderer.cs中实现。首先在Setup函数中将pass添加到队列,执行时,执行队列内的pass,并按顺序提交渲染操作。

Unity3D MMORPG核心技术:AOI算法源码分析与详解

       Unity3D是一款跨平台的游戏引擎,在游戏开发领域应用广泛。MMORPG(大型多人在线角色扮演游戏)作为游戏开发的重要领域,在Unity3D中也得到广泛应用。玩家之间的交互是游戏开发中一个重要问题。如何高效处理这些交互?AOI(Area of Interest)算法提供了一个有效解决方案。

       AOI算法是一种空间索引算法,能够依据玩家位置快速确定周围玩家,从而提高交互效率。实现AOI算法通常采用Quadtree(四叉树)或Octree(八叉树),将空间划分为多个区域,每个区域可包含若干玩家。

       以下为AOI算法实现方法和代码解释。

       **实现方法

**

       将空间划分为多个区域(Quadtree或Octree)。

       玩家移动、加入或离开时,更新对应区域。

       玩家查找周围玩家时,遍历相关区域。

       **代码实现

**

       使用C#语言实现Quadtree。

       编写函数,实现玩家进入/离开、移动和查找玩家。

       通过上述方法和代码,AOI算法可以在MMORPG中高效处理玩家交互,优化游戏性能和玩家体验。

Unity源码学习遮罩:Mask与Mask2D

       Unity源码学习遮罩详解:Mask与Mask2D

       UGUI裁切功能主要有两种方式:Mask和Mask2D。它们各自有独特的原理和适用场景。

       1. Mask原理与实现

       Mask利用IMaskable和IMaterialModifier功能,通过指定一张裁切图,如圆形,限定子元素的显示区域。GPU通过StencilBuffer(一个用于保存像素标记的缓存)来控制渲染,当子元素像素位于Mask指定区域时,才会被渲染。

       StencilBuffer像一个画板,每个像素有一个1字节的内存区域,记录是否被遮盖。当多个UI元素叠加时,通过stencil buffer传递信息,实现精确裁切。

       2. Mask2D原理

       RectMask2D则基于IClippable接口,其裁剪基于RectTransform的大小。在C#层,它找出所有RectMask2D的交集并设置剪裁区域,然后Shader层依据这些区域判断像素是否在内,不满足则透明度设为0。

       RectMask2D的性能优化在于无需依赖Image组件,直接使用RectTransform的大小作为裁剪区域。

       3. 性能区别

       Mask需要Image组件,裁剪区域受限于Image,而RectMask2D独立于Image,裁剪灵活。因此,Mask2D在不需要复杂裁剪时更高效。

       总结:虽然Mask和Mask2D各有优势,选择哪种遮罩取决于具体需求,合理使用能提高性能和用户体验。

本文地址:http://50.net.cn/html/11d622193767.html 欢迎转发