皮皮网
皮皮网

【易汇通变色线源码】【glmark源码安装】【srslte源码学习】ngboost源码

来源:丐帮源码网 发表时间:2024-12-23 00:44:35

1.Apple M1的AI环境搭建

ngboost源码

Apple M1的AI环境搭建

       首先,搭建Apple M1的AI环境,Python3.9作为基础,考虑到M1的ARM架构,Anaconda不再适用,转而选择Miniforge3。易汇通变色线源码必需的库有Tensorflow、xgboost、Lightgbm、Numpy、Pandas、Matplotlib和NGBoost等。由于是Python3.9,部分库可能无法正常使用。

       Homebrew,glmark源码安装作为Mac的包管理工具,对于ARM架构的支持已经到位。如果有X版本的Homebrew,需先卸载,然后通过Homebrew的ARM版本进行安装。安装后,Homebrew会提示设置环境变量,srslte源码学习推荐执行相应操作以确保环境配置。

       在bash shell下,记得source ~/.zprofile。对于X版本的Homebrew,虽然安装后未提示添加环境变量,但同样需要手动管理。

       为了优化软件源,连锁网站源码可以考虑设置中科大源或清华大学源,如果需要更多选择,可以查看Homebrew的其他设置。对于cask,由于GitHub API访问限制,可能需要申请Api Token。

       接下来,rsi源码精准下载并安装Miniforge3的arm版本,安装过程中会询问是否添加conda init到~/.zshrc。安装完成后,可以创建一个专为Tensorflow学习的虚拟环境。

       Tensorflow的安装方式有两种,一是默认安装,Apple已优化支持;二是通过environment.yml预先配置。在tf环境内,可以测试安装是否成功。

       对于Lightgbm,编译安装是较为可靠的方法,通过brew安装并设置编译环境。至于Numpy,通常会在Tensorflow安装时自动安装,其他库如Pandas、Matplotlib和NGBoost,可以通过conda或pip进行安装。

       注意,可能遇到的库问题,如OpenCV、Dlib等,需自行下载源码编译。在整个过程中,遇到问题时,Google搜索和官方文档是不可或缺的参考资源。

       最后,值得注意的是相关教程和指南,如TensorFlow-macos、Run xgboost on Mac、加速Mac上的TensorFlow性能等,这些都能提供具体步骤和帮助,确保在M1芯片Mac上顺利搭建AI环境。

相关栏目:热点