【forcast函数源码】【Svmmatlab源码】【源码研究】招募任务源码_招募任务源码怎么用

2024-12-23 05:16:55 来源:区块链浏览器 源码 分类:娱乐

1.Diffusion Model原理详解及源码解析
2.**<源代码>讲的招募招募什么意思,没看懂。任务任务

招募任务源码_招募任务源码怎么用

Diffusion Model原理详解及源码解析

       Hello,源码源码用大家好,招募招募我是任务任务小苏

       今天来为大家介绍Diffusion Model(扩散模型),在具体介绍之前呢,源码源码用forcast函数源码先来谈谈Diffusion Model主要是招募招募用来干什么的。其实啊,任务任务它对标的源码源码用是生成对抗网络(GAN),只要GAN能干的招募招募事它基本都能干。在我一番体验Diffusion Model后,任务任务它给我的源码源码用感觉是非常惊艳的。我之前用GAN网络来实现一些生成任务其实效果并不是招募招募很理想,而且往往训练很不稳定。任务任务但是源码源码用换成Diffusion Model后生成的则非常逼真,也明显感觉到每一轮训练的结果相比之前都更加优异,也即训练更加稳定。

       说了这么多,我就是想告诉大家Diffusion Model值得一学。但是说实话,这部分的公式理解起来是有一定困难的,我想这也成为了想学这个技术的同学的拦路虎。那么本文将用通俗的语言和公式为大家介绍Diffusion Model,并且结合公式为大家梳理Diffusion Model的代码,探究其是如何通过代码实现的。如果你想弄懂这部分,请耐心读下去,相信你会有所收获。

       如果你准备好了的话,就让我们开始吧!!!

       Diffusion Model的整体思路如下图所示:

       其主要分为正向过程和逆向过程,正向过程类似于编码,Svmmatlab源码逆向过程类似于解码。

       怎么样,大家现在的感觉如何?是不是知道了Diffusion Model大概是怎么样的过程了呢,但是又对里面的细节感到很迷惑,搞不懂这样是怎么还原出的。不用担心,后面我会慢慢为大家细细介绍。

       这一部分为大家介绍一下Diffusion Model正向过程和逆向过程的细节,主要通过推导一些公式来表示加噪前后图像间的关系。

       正向过程在整体思路部分我们已经知道了正向过程其实就是一个不断加噪的过程,于是我们考虑能不能用一些公式表示出加噪前后图像的关系呢。我想让大家先思考一下后一时刻的图像受哪些因素影响呢,更具体的说,比如[公式]由哪些量所决定呢?我想这个问题很简单,即[公式]是由[公式]和所加的噪声共同决定的,也就是说后一时刻的图像主要由两个量决定,其一是上一时刻图像,其二是所加噪声量。「这个很好理解,大家应该都能明白吧」明白了这点,我们就可以用一个公式来表示[公式]时刻和[公式]时刻两个图像的关系,如下:

       [公式] ——公式1

       其中,[公式]表示[公式]时刻的图像,[公式]表示[公式]时刻图像,[公式]表示添加的高斯噪声,其服从N(0,1)分布。「注:N(0,1)表示标准高斯分布,其方差为1,均值为0」目前可以看出[公式]和[公式]、[公式]都有关系,这和我们前文所述后一时刻的图像由前一时刻图像和噪声决定相符合,这时你可能要问了,那么这个公式前面的源码研究[公式]和[公式]是什么呢,其实这个表示这两个量的权重大小,它们的平方和为1。

       接着我们再深入考虑,为什么设置这样的权重?这个权重的设置是我们预先设定的吗?其实呢,[公式]还和另外一个量[公式]有关,关系式如下:

       [公式] ——公式2

       其中,[公式]是预先给定的值,它是一个随时刻不断增大的值,论文中它的范围为[0.,0.]。既然[公式]越来越大,则[公式]越来越小,[公式]越来越小,[公式]越来越大。现在我们在来考虑公式1,[公式]的权重[公式]随着时刻增加越来越大,表明我们所加的高斯噪声越来越多,这和我们整体思路部分所述是一致的,即越往后所加的噪声越多。

       现在,我们已经得到了[公式]时刻和[公式]时刻两个图像的关系,但是[公式]时刻的图像是未知的。我们需要再由[公式]时刻推导出[公式]时刻图像,然后再由[公式]时刻推导出[公式]时刻图像,依此类推,直到由[公式]时刻推导出[公式]时刻图像即可。

       逆向过程是将高斯噪声还原为预期的过程。先来看看我们已知条件有什么,其实就一个[公式]时刻的高斯噪声。我们希望将[公式]时刻的高斯噪声变成[公式]时刻的图像,是很难一步到位的,因此我们思考能不能和正向过程一样,先考虑[公式]时刻图像和[公式]时刻的关系,然后一步步向前推导得出结论呢。8266源码好的,思路有了,那就先来想想如何由已知的[公式]时刻图像得到[公式]时刻图像叭。

       接着,我们利用贝叶斯公式来求解。公式如下:

       那么我们将利用贝叶斯公式来求[公式]时刻图像,公式如下:

       [公式] ——公式8

       公式8中[公式]我们可以求得,就是刚刚正向过程求的嘛。但[公式]和[公式]是未知的。又由公式7可知,可由[公式]得到每一时刻的图像,那当然可以得到[公式]和[公式]时刻的图像,故将公式8加一个[公式]作为已知条件,将公式8变成公式9,如下:

       [公式] ——公式9

       现在可以发现公式9右边3项都是可以算的啦,我们列出它们的公式和对应的分布,如下图所示:

       知道了公式9等式右边3项服从的分布,我们就可以计算出等式左边的[公式]。大家知道怎么计算嘛,这个很简单啦,没有什么技巧,就是纯算。在附录->高斯分布性质部分我们知道了高斯分布的表达式为:[公式]。那么我们只需要求出公式9等式右边3个高斯分布表达式,然后进行乘除运算即可求得[公式]。

       好了,我们上图中得到了式子[公式]其实就是[公式]的表达式了。知道了这个表达式有什么用呢,主要是求出均值和方差。首先我们应该知道对高斯分布进行乘除运算的结果仍然是高斯分布,也就是说[公式]服从高斯分布,那么他的表达式就为 [公式],我们对比两个表达式,源码少年就可以计算出[公式]和[公式],如下图所示:

       现在我们有了均值[公式]和方差[公式]就可以求出[公式]了,也就是求得了[公式]时刻的图像。推导到这里不知道大家听懂了多少呢?其实你动动小手来算一算你会发现它还是很简单的。但是不知道大家有没有发现一个问题,我们刚刚求得的最终结果[公式]和[公式]中含义一个[公式],这个[公式]是什么啊,他是我们最后想要的结果,现在怎么当成已知量了呢?这一块确实有点奇怪,我们先来看看我们从哪里引入了[公式]。往上翻翻你会发现使用贝叶斯公式时我们利用了正向过程中推导的公式7来表示[公式]和[公式],但是现在看来那个地方会引入一个新的未知量[公式],该怎么办呢?这时我们考虑用公式7来反向估计[公式],即反解公式7得出[公式]的表达式,如下:

       [公式] ——公式

       得到[公式]的估计值,此时将公式代入到上图的[公式]中,计算后得到最后估计的 [公式],表达式如下:

       [公式] ——公式

       好了,现在在整理一下[公式]时刻图像的均值[公式]和方差[公式],如下图所示:

       有了公式我们就可以估计出[公式]时刻的图像了,接着就可以一步步求出[公式]、[公式]、[公式]、[公式]的图像啦。

       这一小节原理详解部分就为大家介绍到这里了,大家听懂了多少呢。相信你阅读了此部分后,对Diffusion Model的原理其实已经有了哥大概的解了,但是肯定还有一些疑惑的地方,不用担心,代码部分会进一步帮助大家。

       代码下载及使用本次代码下载地址: Diffusion Model代码

       先来说说代码的使用吧,代码其实包含两个项目,一个的ddpm.py,另一个是ddpm_condition.py。大家可以理解为ddpm.py是最简单的扩散模型,ddpm_condition.py是ddpm.py的优化。本节会以ddpm.py为大家讲解。代码使用起来非常简单,首先在ddpm.py文件中指定数据集路径,即设置dataset_path的值,然后我们就可以运行代码了。需要注意的是,如果你使用的是CPU的话,那么你可能还需要修改一下代码中的device参数,这个就很简单啦,大家自己摸索摸索就能研究明白。

       这里来简单说说ddpm的意思,英文全称为Denoising Diffusion Probabilistic Model,中文译为去噪扩散概率模型。

       代码流程图这里我们直接来看论文中给的流程图好了,如下:

       看到这个图你大概率是懵逼的,我来稍稍为大家解释一下。首先这个图表示整个算法的流程分为了训练阶段(Training)和采样阶段(Sampling)。

       我们在正向过程中加入的噪声其实都是已知的,是可以作为真实值的。而逆向过程相当于一个去噪过程,我们用一个模型来预测噪声,让正向过程每一步加入的噪声和逆向过程对应步骤预测的噪声尽可能一致,而逆向过程预测噪声的方式就是丢入模型训练,其实就是Training中的第五步。

       代码解析首先,按照我们理论部分应该有一个正向过程,其最重要的就是最后得出的公式7,如下:

       [公式]

       那么我们在代码中看一看是如何利用这个公式7的,代码如下:

       Ɛ为随机的标准高斯分布,其实也就是真实值。大家可以看出,上式的返回值sqrt_alpha_hat * x + sqrt_one_minus_alpha_hat其实就表示公式7。注:这个代码我省略了很多细节,我只把关键的代码展示给大家看,要想完全明白,还需要大家记住调试调试了

       接着我们就通过一个模型预测噪声,如下:

       model的结构很简单,就是一个Unet结构,然后里面嵌套了几个Transformer机制,我就不带大家跳进去慢慢看了。现在有了预测值,也有了真实值Ɛ返回后Ɛ用noise表示,就可以计算他们的损失并不断迭代了。

       上述其实就是训练过程的大体结构,我省略了很多,要是大家有任何问题的话可以评论区留言讨论。现在来看看采样过程的代码吧!!!

       上述代码关键的就是 x = 1 / torch.sqrt(alpha) * (x - ((1 - alpha) / (torch.sqrt(1 - alpha_hat))) * predicted_noise) + torch.sqrt(beta) * noise这个公式,其对应着代码流程图中Sampling阶段中的第4步。需要注意一下这里的跟方差[公式]这个公式给的是[公式],但其实在我们理论计算时为[公式],这里做了近似处理计算,即[公式]和[公式]都是非常小且近似0的数,故把[公式]当成1计算,这里注意一下就好。

       代码小结可以看出,这一部分我所用的篇幅很少,只列出了关键的部分,很多细节需要大家自己感悟。比如代码中时刻T的用法,其实是较难理解的,代码中将其作为正余弦位置编码处理。如果你对位置编码不熟悉,可以看一下我的 这篇文章的附录部分,有详细的介绍位置编码,相信你读后会有所收获。

       参考链接由浅入深了解Diffusion

       附录高斯分布性质高斯分布又称正态分布,其表达式为:

       [公式]

       其中[公式]为均值,[公式]为方差。若随机变量服X从正态均值为[公式],方差为[公式]的高斯分布,一般记为[公式]。此外,有一点大家需要知道,如果我们知道一个随机变量服从高斯分布,且知道他们的均值和方差,那么我们就能写出该随机变量的表达式。

       高斯分布还有一些非常好的性质,现举一些例子帮助大家理解。

       版权声明:本文为奥比中光3D视觉开发者社区特约作者授权原创发布,未经授权不得转载,本文仅做学术分享,版权归原作者所有,若涉及侵权内容请联系删文。

       3D视觉开发者社区是由奥比中光给所有开发者打造的分享与交流平台,旨在将3D视觉技术开放给开发者。平台为开发者提供3D视觉领域免费课程、奥比中光独家资源与专业技术支持。

       加入 3D视觉开发者社区学习行业前沿知识,赋能开发者技能提升!加入 3D视觉AI开放平台体验AI算法能力,助力开发者视觉算法落地!

       往期推荐:1、 开发者社区「运营官」招募启动啦! - 知乎 (zhihu.com)

       2、 综述:基于点云的自动驾驶3D目标检测和分类方法 - 知乎 (zhihu.com)

       3、 最新综述:基于深度学习方式的单目物体姿态估计与跟踪 - 知乎 (zhihu.com)

**<源代码>讲的什么意思,没看懂。

       现实中,主角本来的身体就只剩下了半截,靠维生设备维持着脑波之类的东西。那个瘸子科学家就用这点仅存的脑波进行试验。在火车上的是另外一个人,可能他们的脑波频率等很多特征都接近,就借用了他的身体去解除炸弹。

       由于平行理论,火车上的人在另外一个平行空间还活着。当主角的半截身体还活着时,主角的思维已经在火车上那个人身上了,切断维持半截身体的供给,半截身体死亡,主角的灵魂或思维就寄存在了火车上那个人身上了,以那个人的身份生活下去了。

扩展资料

       影片《源代码》是由邓肯·琼斯执导,杰克·吉伦哈尔、维拉·法米加、米歇尔·莫娜汉等人联袂出演。影片于年4月1日在美国上映。

       影片讲述了一位在阿富汗执行任务的美国空军飞行员柯尔特·史蒂文斯,醒来时发现自己正处在一辆前往芝加哥的火车上,并就此经历的一系列惊心动魄的事件。

       “咚,咚”“呼,呼”,急促的心跳声和喘息声震耳欲聋。一切都开始模糊,继而扭曲变形。然后,一阵尖锐的火车汽笛声,将柯尔特·斯蒂文斯上尉(杰克·吉伦哈尔 饰演)拉回了现实。窗外,是疾驰倒退的绿地。坐在他对面的女子(米歇尔·莫娜汉 饰演)疑惑地看着走神的他,又继续着话题,柯尔特突然觉得头皮发麻。

       柯尔特意识到只有一种方法可以证明真相。他冲向洗手间,直愣愣地盯着里面的镜子,出现在镜子里的人,是一个身着呢子大衣、蓝色衬衫,眼中带着几分惊恐的中年男子。不是他自己,至少不是他印象中的自己。还没等他惊魂落定,一股强大的爆炸气流袭来,整列列车在烈火中被炸成碎片。猛然睁开双眼,柯尔特惊疑地看着四周,他发现自己身处一个独立的空间里,穿着本就属于他的军服。

       参考资料源代码(美国年杰克·吉伦哈尔主演科幻片)百度百科

本文地址:http://50.net.cn/html/21b638093598.html 欢迎转发