1.Redis 码解主从复制 - 源码梳理
2.Redis源码从哪里读起?
3.Redis 源码剖析 3 -- redisCommand
4.Redis源码解析:一条Redis命令是如何执行的?
5.[redis 源码走读] maxmemory 数据淘汰策略
6.Redis源码学习(28)-Redis中有序集合对象类型的实现(下)
Redis 主从复制 - 源码梳理
本文主要剖析Redis主从复制机制中的核心组件之一——复制积压缓冲区(Replication Buffer),旨在为读者提供一个对Redis复制流程和缓冲区机制深入理解的码解平台,以下内容仅基于Redis版本7.0.,码解若读者在使用过程中发现偏差,码解欢迎指正。码解
复制积压缓冲区在逻辑上可理解为一个容量最大的码解Spark FPGrowth源码网址位整数,其初始值为1,码解由offset、码解master_repl_offset和repl_backlog-histlen三个变量共同决定缓冲区的码解有效范围。offset表示缓冲区内命令起始位置,码解master_repl_offset代表结束位置,码解二者之间的码解长度由repl_backlog-histlen表示。
每当主节点执行写命令,码解新生成的码解积压缓冲区大小增加,同时增加master_repl_offset和repl_backlog-histlen的码解值,直至达到预设的最大容量(默认为1MB)。一旦所有从节点接收到命令并确认同步无误,缓冲区内过期的命令将被移除,并调整offset和histlen以维持积压区容量的稳定性。
为实现动态分配,复制积压缓冲区被分解成多个block,以链表形式组织。每个block采用引用计数管理策略,初始值为0,每当增加或删除从节点对block的引用时,计数值相应增减。新生成block时,将master_repl_offset+1设置为block的repl_offset值,并将写入命令拷贝至缓冲区内,与此同时,master_repl_offset和repl_backlog-histlen增加。
通过循环遍历所有从节点,为每个从节点设置ref_repl_buf_node指向当前block或最后一个block,确保主从复制能够准确传递命令。当主节点接收到从节点的连接请求时,将开始填充积压缓冲区。在全量复制阶段,从slave-replstate为WAIT_BGSAVE_START至ONLINE,表示redis从后台进程开始执行到完成RDB文件传输和加载,命令传播至此阶段正式开始。
针对每个从节点,openface 源码主节点从slave-ref_block_pos开始发送积压缓冲区内的命令,每发送成功,slave-ref_block_pos相应更新。当积压缓冲区超过预设阈值,即复制积压缓冲区中的有效长度超过repl-backlog-size(默认1MB)时,主节点将清除已发送的缓冲区,释放内存。如果主节点写入命令频繁或从节点断线重连时间长,则需合理调整缓冲区大小(推荐值为2 * second * write_size_per_second)以保持增量复制的稳定运行。
当最后一个从节点与主节点的连接断开超过repl-backlog-ttl(默认为秒)时,主节点将释放repl_backlog和复制积压缓冲区以确保资源的有效使用。不过需要注意的是,从节点的释放操作依赖于节点是否可能成为新的主节点,因此在最后处理逻辑上需保持谨慎。
Redis源码从哪里读起?
如果你正寻求理解Redis源码的路径,本文为你提供了一个全面的指南。Redis 是使用 C 语言构建的,因此,我们从 main 函数开始,深入探索其核心逻辑。在阅读过程中,我们应聚焦于从外部命令输入到内部执行流程的路径,逐步理解 Redis 的工作原理。
理解事件机制对于深入 Redis 的核心至关重要。通过 Redis 的事件循环,我们可以实现单线程环境下的高效处理多任务的能力。这一机制允许 Redis 以线程安全的方式处理大量请求,同时在执行后台任务时保持响应速度。事件循环与系统提供的异步 I/O 多路复用机制相结合,确保了 CPU 资源的高效利用,避免了并发执行的复杂性。
在讨论事件循环时,我们重点关注了两个阶段:初始化和事件处理。初始化阶段涉及配置和数据加载,而事件处理阶段则负责响应客户端请求、执行命令以及周期性任务的调度。通过事件循环,Redis 实现了在单一线程下处理多个请求的高效运行模式。
理解 Redis 命令请求的处理流程是整个指南的关键部分。当客户端向 Redis openbazaar 源码发送命令时,流程分为两个阶段:连接建立和命令执行与响应。连接建立阶段由事件循环触发,而命令执行与响应阶段则涉及读取客户端发送的数据,执行命令并返回结果。这一过程通过特定的回调函数实现,确保了命令处理的高效和线程安全。
此外,我们还讨论了 Redis 的事件机制,即事件驱动程序库 ae.c,它在不同操作系统上支持多种 I/O 多路复用机制。在选择底层机制时,Redis 优先考虑后三种更现代、高效的方案,例如 macOS 上的 kqueue 和 Linux 上的 epoll。理解这些机制对于实现高性能网络服务至关重要。
为了帮助读者在阅读 Redis 源码时构建清晰的思维路径,我们提供了一个树型图展示关键函数之间的调用关系。这张图基于 Redis 源码的 5.0 分支,详细地展示了初始化、事件处理、命令请求处理等关键流程的调用顺序。
最后,本文提供的参考文献旨在为读者提供进一步学习的资源。对于希望深入理解 Redis 源码并学习 C 语言编程经验的读者,这些资源将起到重要作用。总的来说,本文旨在为那些希望从源头上理解 Redis 工作机制的技术爱好者提供一个全面、系统化的指南。
Redis 源码剖析 3 -- redisCommand
Redis 使用 redisCommand 结构体处理命令请求,其内包含一个指向对应处理函数的 proc 指针。redisCommandTable 是一个存储所有 Redis 命令的数组,位于 server.c 文件中。此数组通过 populateCommandTable() 函数填充,该函数将 redisCommandTable 的内容添加到 server.commands 字典,将 Redis 支持的所有命令及其实现整合。
populateCommandTable() 函数中包含 populateCommandTableParseFlags() 子函数,用于将 sflags 字符串转换为对应的 flags 值。lookupCommand*() 函数族负责从 server.commands 中查找相应的命令。
Redis源码解析:一条Redis命令是如何执行的?
作者:robinhzhang Redis,一个开源内存数据库,androphp 源码凭借其高效能和广泛应用,如缓存、消息队列和会话存储,本文将带你探索其命令执行的底层流程。本文将以源码解析的形式,逐层深入Redis的核心结构和命令执行过程,旨在帮助开发者理解实现细节,提升编程技术和设计意识。源码结构概览
在学习Redis源代码之前,首先要了解其主要的组成部分:redisServer、redisClient、redisDb、redisObject以及aeEventLoop。这些结构体和事件模型构成了Redis的核心架构。redisServer:服务端运行的核心结构,包括监听socket、数据存储的redisDb列表和客户端连接信息。
redisClient:客户端连接状态的存储,包括命令处理缓冲区、回复数据列表和数据库句柄。
redisDb:键值对的数据存储,采用两个哈希表实现渐进式rehash。
redisObject:存储对象的通用表示,包含引用计数和LRU时间,用于内存管理。
aeEventLoop:事件循环,管理文件和时间事件的处理。
核心流程详解
Redis的执行流程从main函数开始,首先初始化配置和服务器组件,进入主循环处理事件。命令执行流程涉及redis启动、客户端连接、接收命令和返回结果四个步骤:启动阶段:创建socket服务器,注册可读事件,进入主循环。
连接阶段:客户端连接后,接收并处理命令,创建客户端实例。
命令阶段:客户端发送命令,服务端解析并调用对应的libegl 源码命令处理函数。
结果阶段:处理命令后,根据协议格式构建回复并写回客户端。
渐进式rehash与内存管理
Redis的内存管理采用引用计数法,通过对象的refcount字段控制内存分配和释放。rehash操作在Redis 2.x版本引入,通过逐步迁移键值对,降低对单线程性能的影响。当负载达到阈值,会进行扩容,这涉及新表的创建和键值对的迁移。总结
本文通过Redis源码分析,揭示了其命令执行的细节,包括启动流程、客户端连接、命令处理和结果返回,以及内存管理策略。这将有助于开发者深入理解Redis的工作原理,提升编程效率和设计决策能力。[redis 源码走读] maxmemory 数据淘汰策略
Redis 是一个内存数据库,通过配置 `maxmemory` 来限定其内存使用量。当 Redis 主库内存超出限制时,会触发数据淘汰机制,以减少内存使用量,直至达到限制阈值。
当 `maxmemory` 配置被应用,Redis 会根据配置采用相应的数据淘汰策略。`volatile-xxx` 类型配置仅淘汰设置了过期时间的数据,而 `allkeys-xxx` 则淘汰数据库中所有数据。若 Redis 主要作为缓存使用,可选择 `allkeys-xxx`。
数据淘汰时机发生在事件循环处理命令时。有多种淘汰策略可供选择,从简单到复杂包括:不淘汰数据(`noeviction`)、随机淘汰(`volatile-random`、`allkeys-random`)、采样淘汰(`allkeys-lru`、`volatile-lru`、`volatile-ttl`、`volatile-freq`)以及近似 LRU 和 LRU 策略(`volatile-lru` 和 `allkeys-lru`)。
`noeviction` 策略允许读操作但禁止大多数写命令,返回 `oomerr` 错误,仅允许执行少量写命令,如删除命令 `del`、`hdel` 和 `unlink`。
`volatile-random` 和 `allkeys-random` 机制相对直接,随机淘汰数据,策略相对暴力。
`allkeys-lru` 策略根据最近最少使用(LRU)算法淘汰数据,优先淘汰最久未使用的数据。
`volatile-lru` 结合了过期时间与 LRU 算法,优先淘汰那些最久未访问且即将过期的数据。
`volatile-ttl` 策略淘汰即将过期的数据,而 `volatile-freq` 则根据访问频率(LFU)淘汰数据,考虑数据的使用热度。
`volatile-lru` 和 `allkeys-lru` 策略通过采样来近似 LRU 算法,维护一个样本池来确定淘汰顺序,以提高淘汰策略的精确性。
总结而言,Redis 的数据淘汰策略旨在平衡内存使用与数据访问需求,通过灵活的配置实现高效的数据管理。策略的选择应基于具体应用场景的需求,如数据访问模式、性能目标等。
Redis源码学习()-Redis中有序集合对象类型的实现(下)
Redis提供了删除有序集合中元素的命令ZREM,其可以删除不存在的成员,执行成功后返回被删除元素的数量。这个操作是通过zremCommand函数实现的,它首先查找对应的有序集合,然后循环调用zsetDel进行删除,当集合成员减为0时,会从内存数据库中移除。 除此之外,Redis还有一组命令ZREMRANGEBYRANK、ZREMRANGEBYSCORE与ZREMRANGEBYLEX,用于根据排名、分值或字典顺序批量删除有序集合成员。它们都通过zremrangeGenericCommand函数,结合不同删除类型接口来执行操作。 有序集合的集合操作包括ZUNIONSTORE和ZINTERSTORE,用于计算交集和并集,支持权重参数和聚合方式(默认SUM)。操作完成后,destination集合会被覆盖。 区间获取命令如ZRANGE和ZREVRANGE,以及ZRANGEBYSCORE和ZREVRANGEBYSCORE,提供了基于排序和分值的区间成员获取功能,通过genericZrangebyscoreCommand函数实现。 ZRANGEBYLEX和ZREVRANGEBYLEX命令则基于字典顺序获取区间成员,同样有类似的实现基础。 Redis的ZCOUNT和ZLEXCOUNT命令分别用于计算指定分值区间内的成员数量,前者根据底层编码选择不同的计算策略,后者仅在所有成员分值相同时有效。 统计元素个数的ZCARD命令,通过zsetLength接口获取,而ZSCORE用于获取指定成员的分值,不存在或成员不存在则返回nil。 排名操作ZRANK和ZREVRANK由zrankGenericCommand实现,利用zsetRank接口获取元素排名。 有序集合的弹出数据操作ZPOPMIN和ZPOPMAX,以及阻塞版本BZPOPMIN和BZPOPMAX,通过genericZpopCommand函数处理,根据集合非空状态决定是否阻塞。读懂Redis:从源码分析其跳表实现
要深入理解Redis中跳表的奥秘,首先,我们从理想化的跳表概念开始。跳表作为一种多层级有序链表,旨在提供高效的有序集合操作,如zrange和zrevrange。它的设计旨在通过空间换时间,以O(log_2 n)的时间复杂度进行查找,但删除和增加操作可能导致结构变动,这在理想情况下需要复杂的重构。
Redis在实践中对跳表进行了优化,以牺牲一定程度的复杂性来节省内存。它限制了跳表的最高层级为,并根据节点数量和字符串长度选择是否使用跳表。Redis的跳表设计重点在于第一个层级的元素,这使得范围查询极其高效,而这是其他数据结构难以比拟的特性。
当添加新元素到zset对象时,会根据特定条件(zset_max_ziplist_entries和zset_max_ziplist_value)决定是否转换为跳表。通过配置Redis的配置文件,用户可以调整这些参数以适应不同的需求。
总的来说,Redis的跳表实现是内存与性能之间的一种平衡,它在有序集合操作中发挥着关键作用,同时为高效查询提供了基础。对于希望系统学习C/C++、Linux系统和深入理解高性能存储的读者,可以关注我们的公众号《Lion 莱恩呀》获取更多技术内容,包括白金学习卡,覆盖基础架构、golang云原生等领域。
Redis7.0源码阅读:哈希表扩容、缩容以及rehash
当哈希值相同发生冲突时,Redis 使用链表法解决,将冲突的键值对通过链表连接,但随着数据量增加,冲突加剧,查找效率降低。负载因子衡量冲突程度,负载因子越大,冲突越严重。为优化性能,Redis 需适时扩容,将新增键值对放入新哈希桶,减少冲突。
扩容发生在 setCommand 部分,其中 dictKeyIndex 获取键值对索引,判断是否需要扩容。_dictExpandIfNeeded 函数执行扩容逻辑,条件包括:不在 rehash 过程中,哈希表初始大小为0时需扩容,或负载因子大于1且允许扩容或负载因子超过阈值。
扩容大小依据当前键值对数量计算,如哈希表长度为4,实际有9个键值对,扩容至(最小的2的n次幂大于9)。子进程存在时,dict_can_resize 为0,反之为1。fork 子进程用于写时复制,确保持久化操作的稳定性。
哈希表缩容由 tryResizeHashTables 判断负载因子是否小于0.1,条件满足则重新调整大小。此操作在数据库定时检查,且无子进程时执行。
rehash 是为解决链式哈希效率问题,通过增加哈希桶数量分散存储,减少冲突。dictRehash 函数完成这一任务,移动键值对至新哈希表,使用位运算优化哈希计算。渐进式 rehash 通过分步操作,减少响应时间,适应不同负载情况。定时任务检测服务器空闲时,进行大步挪动哈希桶。
在 rehash 过程中,数据查询首先在原始哈希表进行,若未找到,则在新哈希表中查找。rehash 完成后,哈希表结构调整,原始表指向新表,新表内容返回原始表,实现 rehash 结果的整合。
综上所述,Redis 通过哈希表的扩容、缩容以及 rehash 动态调整哈希桶大小,优化查找效率,确保数据存储与检索的高效性。这不仅提高了 Redis 的性能,也为复杂数据存储与管理提供了有力支持。
Redis radix tree 源码解析
Redis 实现了不定长压缩前缀的 radix tree,用于集群模式下存储 slot 对应的所有 key 信息。本文解析在 Redis 中实现 radix tree 的核心内容。
核心数据结构的定义如下:
每个节点结构体 (raxNode) 包含了指向子节点的指针、当前节点的 key 的长度、以及是否为叶子节点的标记。
以下是插入流程示例:
场景一:仅插入 "abcd"。此节点为叶子节点,使用压缩前缀。
场景二:在 "abcd" 之后插入 "abcdef"。从 "abcd" 的父节点遍历至压缩前缀,找到 "abcd" 空子节点,插入 "ef" 并标记为叶子节点。
场景三:在 "abcd" 之后插入 "ab"。ab 为 "abcd" 的前缀,插入 "ab" 为子节点,并标记为叶子节点。同时保留 "abcd" 的前缀结构。
场景四:在 "abcd" 之后插入 "abABC"。ab 为前缀,创建 "ab" 和 "ABC" 分别为子节点,保持压缩前缀结构。
删除流程则相对简单,找到指定 key 的叶子节点后,向上遍历并删除非叶子节点。若删除后父节点非压缩且大小大于1,则需处理合并问题,以优化树的高度。
合并的条件涉及:删除节点后,检查父节点是否仍为非压缩节点且包含多个子节点,以此决定是否进行合并操作。
结束语:云数据库 Redis 版提供了稳定可靠、性能卓越、可弹性伸缩的数据库服务,基于飞天分布式系统和全SSD盘高性能存储,支持主备版和集群版高可用架构。提供全面的容灾切换、故障迁移、在线扩容、性能优化的数据库解决方案,欢迎使用。