皮皮网
皮皮网

【ble调试宝 源码】【信用报告源码】【源码开发骗局案例】图像中值滤波的软件源码

来源:智能社区app源码 发表时间:2024-12-22 14:57:12

1.改进CNN&FCN的图像晶圆缺陷分割系统
2.用c++做图像识别
3.图像处理翻译

图像中值滤波的软件源码

改进CNN&FCN的晶圆缺陷分割系统

       随着半导体行业的快速发展,半导体晶圆的中值生产需求与日俱增,然而在生产过程中不可避免地会出现各种缺陷,滤波这直接影响了半导体芯片产品的图像质量。因此,中值基于机器视觉的滤波ble调试宝 源码晶圆表面检测方法成为研究热点。本文针对基于机器视觉的图像晶圆表面缺陷检测算法进行深入研究。

       在实验中,中值我们采用三种方式对样本晶圆进行成像。滤波第一种方式使用工业显微相机,图像配备白色环光,中值成像分辨率高达×,滤波位深度为,图像信用报告源码视野约为5.5mm ×3.1mm。中值第二种方式使用相机 MER--GM,滤波配有蓝色环光和2倍远心镜头,物距mm,成像分辨率×,位深度,源码开发骗局案例视野宽4.4mm,精度为2jum。第三种方式采用相机 Manta G-B,白色环光LTS-RN-W,镜头TY-A,物距mm,乐买买系统源码成像分辨率×,位深度8,视野宽3mm,精度1 jum。

       传统的基于CNN的分割方法在处理晶圆缺陷时存在存储开销大、效率低下、中卫网站搭建源码像素块大小限制感受区域等问题。而全卷积网络(FCN)能够从抽象特征中恢复每个像素所属的类别,但在细节提取和空间一致性方面仍有不足。

       本文提出改进DUC(dense upsampling convolution)和HDC(hybrid dilated convolution),通过学习一系列上采样滤波器一次性恢复label map的全部分辨率,解决双线性插值丢失信息的问题,实现端到端的分割。

       系统整合包括源码、环境部署视频教程、数据集和自定义UI界面等内容。

       参考文献包括关于机器视觉缺陷检测的研究综述、产品缺陷检测方法、基于深度学习的产品缺陷检测、基于改进的加权中值滤波与K-means聚类的织物缺陷检测、基于深度学习的子弹缺陷检测方法、机器视觉表面缺陷检测综述、基于图像处理的晶圆表面缺陷检测、非接触超声定位检测研究、基于深度学习的人脸识别方法研究等。

用c++做图像识别

       æœ‰ä¸ªå¤§è‡´æ€è·¯ï¼š 首先读一下两张图片,将图像二值化,把其有效点给分离出来,然后将图片用0和1两个值进行表示,然后将图片每一个像素点转换为数组数据,然后根据规定坐标到数组里面判定,最后返回结果。应该会用上“图片灰度化算法”,“图片中值滤波算法”,等比较重要的算法。 用C++的话,应该用opencv吧,我有个同学做人脸识别的,就用这个类库。用opencv试一试吧 /projects/opencvlibrary

图像处理翻译

       é’ˆå¯¹ç»™å‡ºçš„图像(moon.tif)或者自行选择的灰度图像:

        1):给图像分别添加高斯噪声和椒盐噪声。

        2):对加噪图像的中心区域(*)进行空间滤波,尽最大可能消除噪声。

        3):对加噪图像的中心区域(*)进行频域滤波,尽最大可能消除噪声。

       æŠ€æœ¯æè¿°ï¼š

       å¯¹å›¾åƒè¿›è¡ŒåŠ é«˜æ–¯å™ªå£°å’Œæ¤’盐噪声处理;对包含高斯噪声和椒盐噪声的图片进行处理,使处理后的图像比原图像清晰。

       æ‰€éœ€åº”用到的技术,包括:

       a>对图片加噪声

       b>选取中心区域

       c>对选取的区域进行降噪处理

       d>重新生成图像。

       e>构造高斯低通滤波器时用到了高斯公式:exp(-(u^2+v^2)/(2*(D0^2)))

       ç»“果讨论:

       ä»¥ä¸‹æ˜¯å¯¹ä¸åŒçš„滤波器针对不同噪点处理的测试结果。

       å‚考下面的试验结果,进行讨论:

       A()是使用fspecial('gaussian’)平滑空域滤波处理效果,不过效果不是最好,由于最大程度降噪,导致图像模糊;

       A()是频域滤波处理后的结果,因为使用了高斯低通滤波器,所以会有条黑线,处理一般;

       A()是使用medfilt2()空域中值滤波器效果,降噪效果很不错,图像也很清晰;

       A() 是频域滤波处理后的结果,同A(),因为使用了高斯低通滤波器,所以会有条黑线,效果一般。

       è¯•éªŒç»“æžœ:

       é«˜æ–¯åŠ å™ªå’Œæ¤’盐加噪处理图分别如下:

        如图:

        图(A):原图

        图(A):高斯加噪

        图(A):对图(A)进行中心*空域滤波

        图(A):对图(A)进行中心*频域滤波

       ï¼ˆA0) (A)

       ï¼ˆA) (A)

        如图:

        图(A):原图

        图(A):椒盐加噪

        图(A):对图(A)进行中心*空域滤波

        图(A):对图(A)进行中心*频域滤波

       (A) (A)

       (A) (A)

       é™„录:

       æºä»£ç 1 :对高斯噪声的处理

       f=imread('moon.tif');

       J=imnoise(f,'gaussian',0.,0.);%添加高斯噪声

       %空域滤波

       r=[ ];

       c=[ ];

       BW=roipoly(J,c,r);

       h=fspecial('gaussian',[5 5]);

       A=roifilt2(J,h,BW);

       figure,imshow(A);

       %频域滤波

       f1=imcrop(fn,[ ]);

       %截取*大小的窗口图片

       f2=[ ];

       %建立一个新的图像

       f2=uint8(f2);

       f2=padarray(f2,[ ],);

       %将新建图像拓展到*的黑色图片

       f2=padarray(f2,[ ],0);

       %在新建图片周围添加白色使之大小为moon图片的大小

       fn=fn-f2;

       %得到中心*区域内为黑色的moon图片

       PQ=paddedsize(size(f1));

       [u,v]=dftuv(PQ(1),PQ(2));

       D0=0.2*PQ(2);

       hh=exp(-(u.^2+v.^2)/(2*(D0^2)));

       %构造高斯低通滤波器

       h1=dftfilt(f1,hh);

       A=padarray(h1,[ ],0);

       %将h1拓展到moon图片大小

       A=uint8(A)+fn;

       %得到中心*区域处理后的moon图片

       figure,imshow(A);

       æºä»£ç 2 :对椒盐噪声的处理

       f=imread('moon.tif');

       fn=imnoise(f,'salt & pepper',0.);

       %添加椒盐噪声

       %空域滤波

       f1=imcrop(fn,[ ]);

       %截取*大小的窗口图片

       f2=[ ];

       %建立一个新的图像

       f2=uint8(f2);

       f2=padarray(f2,[ ],);

       %将新建图像拓展到*的黑色图片

       f2=padarray(f2,[ ],0);

       %在新建图片周围添加白色使之大小为moon图片的大小

       fn=fn-f2;

       %得到中心*区域内为黑色的moon图片

       h=medfilt2(f1,'symmetric');

       %对f1进行中值处理

       A=padarray(h,[ ],0);

       %将h拓展到moon图片大小

       A=A+fn;

       %得到中心*区域处理后的moon图片

       figure,imshow(A);

       %频域滤波

       f1=imcrop(fn,[ ]);

       %截取*大小的窗口图片

       f2=[ ];

       %建立一个新的图像

       f2=uint8(f2);

       f2=padarray(f2,[ ],);

       %将新建图像拓展到*的黑色图片

       f2=padarray(f2,[ ],0);

       %在新建图片周围添加白色使之大小为moon图片的大小

       fn=fn-f2;

       %得到中心*区域内为黑色的moon图片

       PQ=paddedsize(size(f1));

       [u,v]=dftuv(PQ(1),PQ(2));

       D0=0.1*PQ(2);

       hh=exp(-(u.^2+v.^2)/(2*(D0^2)));%构造高斯低通滤波器

       h1=dftfilt(f1,hh);

       A=padarray(h1,[ ],0);

       %将h1拓展到moon图片大小

       A=uint8(A)+fn;

       %得到中心*区域处理后的moon图片

       figure,imshow(A);

相关栏目:休闲