【美食类html源码】【尚学堂300源码】【食堂报餐++源码】3d公主连结源码_公主连结3+游戏

时间:2024-12-23 05:58:24 分类:本地源码的位置 来源:卡密出售源码

1.Unity3D MMORPG核心技术:AOI算法源码分析与详解
2.3d稀疏卷积——spconv源码剖析(五)
3.DETR3D模型源码导读 & MMDetection3D构建流程
4.[技术随笔]🛠🛠从源码安装Pytorch3D详细记录及学习资料
5.3d稀疏卷积——spconv源码剖析(一)
6.MMDetection3D之DETR3D源码解析:整体流程篇

3d公主连结源码_公主连结3+游戏

Unity3D MMORPG核心技术:AOI算法源码分析与详解

       Unity3D是主连主连一款跨平台的游戏引擎,在游戏开发领域应用广泛。结源结游MMORPG(大型多人在线角色扮演游戏)作为游戏开发的主连主连重要领域,在Unity3D中也得到广泛应用。结源结游玩家之间的主连主连交互是游戏开发中一个重要问题。如何高效处理这些交互?AOI(Area of Interest)算法提供了一个有效解决方案。结源结游美食类html源码

       AOI算法是主连主连一种空间索引算法,能够依据玩家位置快速确定周围玩家,结源结游从而提高交互效率。主连主连实现AOI算法通常采用Quadtree(四叉树)或Octree(八叉树),结源结游将空间划分为多个区域,主连主连每个区域可包含若干玩家。结源结游

       以下为AOI算法实现方法和代码解释。主连主连

       **实现方法

**

       将空间划分为多个区域(Quadtree或Octree)。结源结游

       玩家移动、主连主连加入或离开时,更新对应区域。

       玩家查找周围玩家时,遍历相关区域。

       **代码实现

**

       使用C#语言实现Quadtree。

       编写函数,尚学堂300源码实现玩家进入/离开、移动和查找玩家。

       通过上述方法和代码,AOI算法可以在MMORPG中高效处理玩家交互,优化游戏性能和玩家体验。

3d稀疏卷积——spconv源码剖析(五)

       介绍在构建的Rulebook指导下执行特定的稀疏卷积计算,关注于类SparseConvolution,其代码位于spconv/conv.py。

       Fsp.indice_subm_conv和Fsp.indice_conv经过spconv/functional.py中的SubMConvFunction和SparseConvFunction对象转换,最终会调用spconv/ops.py模块中的indice_conv等函数。

       专注于子流线卷积接口:indice_subm_conv,其代码位于spconv/functional.py。

       通过Python接口调用底层C++函数可能不够直观,因此使用torch.autograd.Function封装算子底层调用,该类表示PyTorch中的可导函数,具备前向推理和反向传播实现时,即可作为普通PyTorch函数使用。

       值得注意的是,Function类在模型部署中具有优势,若定义了symbolic静态方法,食堂报餐++源码此Function在执行torch.onnx.export()时,可依据symbolic定义规则转换为ONNX算子。

       apply方法是torch.autograd.Function的一部分,此方法负责在前向推理或反向传播时的调度工作。通过将indice_subm_conv = SubMConvFunction.apply简化为indice_subm_conv接口,简化了算子使用,屏蔽了SubMConvFunction的具体实现。

       SubMConvFunction的前向传播方法forward调用spconv/ops.py的indice_conv函数。在src/spconv/all.cc文件中,通过PyTorch提供的OP Register对底层C++API进行注册。

       通过torch.ops.load_library加载.so文件,使用torch.ops.spconv.indice_conv调用src/spconv/spconv_ops.cc文件中的indiceConv函数。

       深入探索src/spconv/spconv_ops.cc文件中的indiceConv函数。

       代写部分代码内容...

DETR3D模型源码导读 & MMDetection3D构建流程

       本文主要梳理了学习理解DETR3D模型源码与MMDetection3D构建流程的过程。首先,介绍model dict的配置与模型参数设置,指出在模型部分按照backbone、neck、head顺序定义,体现模型结构。php源码收发文

       MMDetection3D在模型构建中利用类之间的包含关系递归实例化组件。在构建模型后,借助于registry机制实例化每一个组件,展现其层次性与模块化设计。

       在初始化流程中,首先在train.py的build_model开始,通过调用build方法逐级初始化各子结构,直至最底层结构,遵循初始化顺序:Detr3D -> backbone -> neck -> head -> head_transformer -> head_transformer_decoder -> 最终组件。其中,许多类继承自官方提供的框架结构,通过super()调用在父类中实现子结构初始化。

       关于DETR3D的组件,backbone、neck、head分别负责特征提取、融合、和目标检测的关键阶段。Detr3DHead继承自mmdet3d的DetrHead类,是医院wifi系统源码模型的头部组件,实现特定检测任务。

       DETR3DTransformer位于模型底层,是实现论文创新点的关键部分。其通过传感器转换矩阵预测reference points,并将投影到特征图,结合Bilinear Interpolation抓取固定区域特征,通过object queries refinement改善queries,用于目标预测。这一部分负责查询、特征捕捉与优化。

       Decoder是DETR3D的核心,专注于实现object queries refinement。这一过程在论文中被详细探讨,并在代码中得到具体实现。值得注意的是,F.grid_sample()在特征处理过程中扮演着关键角色,展示其在变换与映射任务中的应用。

[技术随笔]🛠🛠从源码安装Pytorch3D详细记录及学习资料

       在启动安装Pytorch3D之前,首要任务是选择合适的pytorch基础镜像。我选择了包含CUDA组件和驱动的pytorch 1.9的devel版本,以确保满足Pytorch3D对于pytorch和cuda版本的要求。我使用的是python 3.7、pytorch 1.9和cuda.2,前提是你已经在宿主机上配置好了显卡驱动和nvidia-docker,以便在容器内映射宿主机的显卡信息。

       在安装前,确保nvcc编译器、CUDA工具箱和驱动正常运行,并且安装了git、vim、sudo和curl等基础工具。

       下一步是配置CUB工具。按照Pytorch3D的安装文档,为了支持CUDA,需要先配置CUB,并设置CUB_HOME环境变量。由于选择的镜像包含CUDA,编译过程中会自动包含cuda。为保险起见,可以指定FORCE_CUDA环境变量为1。

       从源码编译Pytorch3D时,避免了使用conda可能遇到的依赖冲突问题。在确认前两步没有问题后,编译过程通常顺利。安装完成后,检查日志和pytorch3d的版本信息。

       为了验证Pytorch3D的正常运行,从ARkit中导出BS系数,尝试使用它渲染一个简单的白模,并利用GPU。观察到显卡被充分利用,表明设置正确,可以进行后续操作。

       在完成安装并验证Pytorch3D的功能后,可以参考收集的资料来探索其更高级的用法。以下是几个示例:

       从Pytorch3D文档中获取的教程和代码示例。

       开源社区的讨论和问题解答,特别是与Pytorch3D相关的话题。

       个人经验分享和案例研究,可以在GitHub、Stack Overflow等平台找到。

       通过这些资源,您可以深入学习Pytorch3D的功能和应用,进一步拓展其在计算机图形学、三维重建和深度学习等领域的应用。

3d稀疏卷积——spconv源码剖析(一)

       本文主要阐述卷积的基本理论,并以spconv源码为例进行解析。首先,介绍2D与3D卷积的基础知识及其分类。随后,深入探讨3D稀疏卷积的工作原理。

       2D卷积涉及卷积核在二维图像空间上的滑动操作。它分为单通道卷积与多通道卷积。单通道卷积在输入图像的单一通道上进行,得到特征图。多通道卷积在同一图像中不同通道上进行,每个通道得到一个对应的新通道,最终通过相加生成特征图。

       3D卷积在此基础上扩展到三维空间,涉及单通道与多通道情况。三维单通道卷积在立方体上进行,而三维多通道卷积则处理拥有多个通道的三维图像。

       2D与3D卷积计算涉及输入层、输出层与参数关系的数学公式。考虑偏置参数与计算量,FLOPS(浮点运算量)也在此阶段被计算。

       稀疏卷积分为SC(Sparse Convolution)与VSC(Valid Sparse Convolution)两种类型。SC卷积计算激活站点并丢弃非激活站点,而VSC卷积在SC的基础上进行了简化。

       卷积神经网络对三维点云数据处理时,面临计算量增加的问题,而SC与VSC卷积利用稀疏性实现高效处理。构建输入与输出哈希表,对点云数据进行快速访问。GetOffset()函数用于定位卷积操作的位置,Rulebook用于存储原子操作规则,指导稀疏卷积过程。

       稀疏卷积的关键在于构建输入、输出哈希表以及建立两者之间的联系,实现对稀疏数据的有效处理。spconv库中的get_indice_pairs函数通过调用getIndicePairs实现这一过程。

MMDetection3D之DETR3D源码解析:整体流程篇

       关于torch.distributed.launch的更多细节: blog.csdn.net/magic_ll/...

       设置config file和work dir,work dir保存最终config,log等信息,work dir默认为path/to/user/work_dir/

       作者将自定义的部分放在 'projects/mmdet3d_plugin/' 文件夹下,通过registry类注册模块,这里利用importlib导入模块并初始化自定义的类。

       这里设置模型的输出信息保存路径、gpus等模型的运行时环境参数

       这里初始化模型,初始化train_dataset和val_dataset

       这部分完成了DataLoader的初始化,runner和hooks的初始化,并且按照workflow运行runner。