1.HashMap为ä»ä¹ä¸å®å
¨ï¼
2.JDK成长记7:3张图搞懂HashMap底层原理!
3.一文带你读懂HashMap的原理和结构
4.concurrenthashmap1.8源码如何详细解析?
5.HashMap 的初始值和最大值和扩容因子
6.hashmapåºå±å®ç°åç
HashMap为ä»ä¹ä¸å®å ¨ï¼
æ们é½ç¥éHashMapæ¯çº¿ç¨ä¸å®å ¨çï¼å¨å¤çº¿ç¨ç¯å¢ä¸ä¸å»ºè®®ä½¿ç¨ï¼ä½æ¯å ¶çº¿ç¨ä¸å®å ¨ä¸»è¦ä½ç°å¨ä»ä¹å°æ¹å¢ï¼æ¬æå°å¯¹è¯¥é®é¢è¿è¡è§£å¯ã1.jdk1.7ä¸çHashMap
å¨jdk1.8ä¸å¯¹HashMapåäºå¾å¤ä¼åï¼è¿éå åæå¨jdk1.7ä¸çé®é¢ï¼ç¸ä¿¡å¤§å®¶é½ç¥éå¨jdk1.7å¤çº¿ç¨ç¯å¢ä¸HashMap容æåºç°æ»å¾ªç¯ï¼è¿éæ们å ç¨ä»£ç æ¥æ¨¡æåºç°æ»å¾ªç¯çæ åµï¼
public class HashMapTest { public static void main(String[] args) { HashMapThread thread0 = new HashMapThread(); HashMapThread thread1 = new HashMapThread(); HashMapThread thread2 = new HashMapThread(); HashMapThread thread3 = new HashMapThread(); HashMapThread thread4 = new HashMapThread(); thread0.start(); thread1.start(); thread2.start(); thread3.start(); thread4.start(); }}class HashMapThread extends Thread { private static AtomicInteger ai = new AtomicInteger(); private static Map map = new HashMap<>(); @Override public void run() { while (ai.get() < ) { map.put(ai.get(), ai.get()); ai.incrementAndGet(); } }}
ä¸è¿°ä»£ç æ¯è¾ç®åï¼å°±æ¯å¼å¤ä¸ªçº¿ç¨ä¸æè¿è¡putæä½ï¼å¹¶ä¸HashMapä¸AtomicIntegeré½æ¯å ¨å±å ±äº«çã
å¨å¤è¿è¡å 次该代ç åï¼åºç°å¦ä¸æ»å¾ªç¯æ å½¢ï¼
å ¶ä¸æå 次è¿ä¼åºç°æ°ç»è¶ççæ åµï¼
è¿éæ们çéåæ为ä»ä¹ä¼åºç°æ»å¾ªç¯çæ åµï¼éè¿jpsåjstackå½åæ¥çæ»å¾ªç¯æ åµï¼ç»æå¦ä¸ï¼
ä»å æ ä¿¡æ¯ä¸å¯ä»¥çå°åºç°æ»å¾ªç¯çä½ç½®ï¼éè¿è¯¥ä¿¡æ¯å¯æç¡®ç¥éæ»å¾ªç¯åçå¨HashMapçæ©å®¹å½æ°ä¸ï¼æ ¹æºå¨transferå½æ°ä¸ï¼jdk1.7ä¸HashMapçtransferå½æ°å¦ä¸ï¼
void transfer(Entry[] newTable, boolean rehash) { int newCapacity = newTable.length; for (Entry e : table) { while(null != e) { Entry next = e.next; if (rehash) { e.hash = null == e.key ? 0 : hash(e.key); } int i = indexFor(e.hash, newCapacity); e.next = newTable[i]; newTable[i] = e; e = next; } } }
æ»ç»ä¸è¯¥å½æ°ç主è¦ä½ç¨ï¼
å¨å¯¹tableè¿è¡æ©å®¹å°newTableåï¼éè¦å°åæ¥æ°æ®è½¬ç§»å°newTableä¸ï¼æ³¨æ-è¡ä»£ç ï¼è¿éå¯ä»¥çåºå¨è½¬ç§»å ç´ çè¿ç¨ä¸ï¼ä½¿ç¨çæ¯å¤´ææ³ï¼ä¹å°±æ¯é¾è¡¨ç顺åºä¼ç¿»è½¬ï¼è¿éä¹æ¯å½¢ææ»å¾ªç¯çå ³é®ç¹ã
ä¸é¢è¿è¡è¯¦ç»åæã
1.1 æ©å®¹é ææ»å¾ªç¯åæè¿ç¨
åææ¡ä»¶ï¼è¿éå设ï¼
hashç®æ³ä¸ºç®åçç¨key modé¾è¡¨ç大å°ã
æå¼å§hash表size=2ï¼key=3,7,5ï¼åé½å¨table[1]ä¸ã
ç¶åè¿è¡resizeï¼ä½¿sizeåæ4ã
æªresizeåçæ°æ®ç»æå¦ä¸ï¼
请ç¹å»è¾å ¥å¾çæè¿°
å¦æå¨å线ç¨ç¯å¢ä¸ï¼æåçç»æå¦ä¸ï¼
请ç¹å»è¾å ¥å¾çæè¿°
è¿éç转移è¿ç¨ï¼ä¸åè¿è¡è¯¦è¿°ï¼åªè¦ç解transferå½æ°å¨åä»ä¹ï¼å ¶è½¬ç§»è¿ç¨ä»¥åå¦ä½å¯¹é¾è¡¨è¿è¡å转åºè¯¥ä¸é¾ã
ç¶åå¨å¤çº¿ç¨ç¯å¢ä¸ï¼å设æ两个线ç¨AåBé½å¨è¿è¡putæä½ã线ç¨Aå¨æ§è¡å°transferå½æ°ä¸ç¬¬è¡ä»£ç å¤æèµ·ï¼å 为该å½æ°å¨è¿éåæçå°ä½é常éè¦ï¼å æ¤å次贴åºæ¥ã
请ç¹å»è¾å ¥å¾çæè¿°
æ¤æ¶çº¿ç¨Aä¸è¿è¡ç»æå¦ä¸ï¼
请ç¹å»è¾å ¥å¾çæè¿°
线ç¨Aæèµ·åï¼æ¤æ¶çº¿ç¨Bæ£å¸¸æ§è¡ï¼å¹¶å®æresizeæä½ï¼ç»æå¦ä¸ï¼
请ç¹å»è¾å ¥å¾çæè¿°
è¿ééè¦ç¹å«æ³¨æçç¹ï¼ç±äºçº¿ç¨Bå·²ç»æ§è¡å®æ¯ï¼æ ¹æ®Javaå å模åï¼ç°å¨newTableåtableä¸çEntryé½æ¯ä¸»åä¸ææ°å¼ï¼7.next=3ï¼3.next=nullã
æ¤æ¶åæ¢å°çº¿ç¨Aä¸ï¼å¨çº¿ç¨Aæèµ·æ¶å åä¸å¼å¦ä¸ï¼e=3ï¼next=7ï¼newTable[3]=nullï¼ä»£ç æ§è¡è¿ç¨å¦ä¸ï¼
newTable[3]=e ----> newTable[3]=3e=next ----> e=7 æ¤æ¶ç»æå¦ä¸ï¼è¯·ç¹å»è¾å ¥å¾çæè¿°
继ç»å¾ªç¯ï¼
e=7next=e.next ----> next=3ãä»ä¸»åä¸åå¼ãe.next=newTable[3] ----> e.next=3ãä»ä¸»åä¸åå¼ãnewTable[3]=e ----> newTable[3]=7e=next ----> e=3 ç»æå¦ä¸ï¼è¯·ç¹å»è¾å ¥å¾çæè¿°
å次è¿è¡å¾ªç¯ï¼
e=3next=e.next ----> next=nulle.next=newTable[3] ----> e.next=7 å³ï¼3.next=7newTable[3]=e ----> newTable[3]=3e=next ----> e=null 注ææ¤æ¬¡å¾ªç¯ï¼e.next=7ï¼èå¨ä¸æ¬¡å¾ªç¯ä¸7.next=3ï¼åºç°ç¯å½¢é¾è¡¨ï¼å¹¶ä¸æ¤æ¶e=null循ç¯ç»æãç»æå¦ä¸ï¼
请ç¹å»è¾å ¥å¾çæè¿°
å¨åç»æä½ä¸åªè¦æ¶å轮询hashmapçæ°æ®ç»æï¼å°±ä¼å¨è¿éåçæ»å¾ªç¯ï¼é ææ²å§ã
1.2 æ©å®¹é ææ°æ®ä¸¢å¤±åæè¿ç¨
éµç §ä¸è¿°åæè¿ç¨ï¼åå§æ¶ï¼
请ç¹å»è¾å ¥å¾çæè¿°
线ç¨Aå线ç¨Bè¿è¡putæä½ï¼åæ ·çº¿ç¨Aæèµ·ï¼
请ç¹å»è¾å ¥å¾çæè¿°
æ¤æ¶çº¿ç¨Açè¿è¡ç»æå¦ä¸ï¼
请ç¹å»è¾å ¥å¾çæè¿°
æ¤æ¶çº¿ç¨Bå·²è·å¾CPUæ¶é´çï¼å¹¶å®æresizeæä½ï¼
请ç¹å»è¾å ¥å¾çæè¿°
åæ ·æ³¨æç±äºçº¿ç¨Bæ§è¡å®æï¼newTableåtableé½ä¸ºææ°å¼ï¼5.next=nullã
æ¤æ¶åæ¢å°çº¿ç¨Aï¼å¨çº¿ç¨Aæèµ·æ¶ï¼e=7ï¼next=5ï¼newTable[3]=nullã
æ§è¡newtable[i]=eï¼å°±å°7æ¾å¨äºtable[3]çä½ç½®ï¼æ¤æ¶next=5ãæ¥çè¿è¡ä¸ä¸æ¬¡å¾ªç¯ï¼
e=5next=e.next ----> next=nullï¼ä»ä¸»åä¸åå¼e.next=newTable[1] ----> e.next=5ï¼ä»ä¸»åä¸åå¼newTable[1]=e ----> newTable[1]=5e=next ----> e=null å°5æ¾ç½®å¨table[1]ä½ç½®ï¼æ¤æ¶e=null循ç¯ç»æï¼3å ç´ ä¸¢å¤±ï¼å¹¶å½¢æç¯å½¢é¾è¡¨ã并å¨åç»æä½hashmapæ¶é ææ»å¾ªç¯ã请ç¹å»è¾å ¥å¾çæè¿°
2.jdk1.8ä¸HashMap
å¨jdk1.8ä¸å¯¹HashMapè¿è¡äºä¼åï¼å¨åçhash碰æï¼ä¸åéç¨å¤´ææ³æ¹å¼ï¼èæ¯ç´æ¥æå ¥é¾è¡¨å°¾é¨ï¼å æ¤ä¸ä¼åºç°ç¯å½¢é¾è¡¨çæ åµï¼ä½æ¯å¨å¤çº¿ç¨çæ åµä¸ä»ç¶ä¸å®å ¨ï¼è¿éæ们çjdk1.8ä¸HashMapçputæä½æºç ï¼
final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node[] tab; Node p; int n, i; if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; if ((p = tab[i = (n - 1) & hash]) == null) // å¦æ没æhash碰æåç´æ¥æå ¥å ç´ tab[i] = newNode(hash, key, value, null); else { Node e; K k; if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; else if (p instanceof TreeNode) e = ((TreeNode)p).putTreeVal(this, tab, hash, key, value); else { for (int binCount = 0; ; ++binCount) { if ((e = p.next) == null) { p.next = newNode(hash, key, value, null); if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; } if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } if (e != null) { // existing mapping for key V oldValue = e.value; if (!onlyIfAbsent || oldValue == null) e.value = value; afterNodeAccess(e); return oldValue; } } ++modCount; if (++size > threshold) resize(); afterNodeInsertion(evict); return null; } è¿æ¯jdk1.8ä¸HashMapä¸putæä½ç主å½æ°ï¼ 注æ第6è¡ä»£ç ï¼å¦æ没æhash碰æåä¼ç´æ¥æå ¥å ç´ ãå¦æ线ç¨Aå线ç¨Båæ¶è¿è¡putæä½ï¼å好è¿ä¸¤æ¡ä¸åçæ°æ®hashå¼ä¸æ ·ï¼å¹¶ä¸è¯¥ä½ç½®æ°æ®ä¸ºnullï¼æ以è¿çº¿ç¨AãBé½ä¼è¿å ¥ç¬¬6è¡ä»£ç ä¸ã
å设ä¸ç§æ åµï¼çº¿ç¨Aè¿å ¥åè¿æªè¿è¡æ°æ®æå ¥æ¶æèµ·ï¼è线ç¨Bæ£å¸¸æ§è¡ï¼ä»èæ£å¸¸æå ¥æ°æ®ï¼ç¶å线ç¨Aè·åCPUæ¶é´çï¼æ¤æ¶çº¿ç¨Aä¸ç¨åè¿è¡hashå¤æäºï¼é®é¢åºç°ï¼çº¿ç¨Aä¼æ线ç¨Bæå ¥çæ°æ®ç»è¦çï¼åç线ç¨ä¸å®å ¨ã
æ»ç»
é¦å HashMapæ¯çº¿ç¨ä¸å®å ¨çï¼å ¶ä¸»è¦ä½ç°ï¼
å¨jdk1.7ä¸ï¼å¨å¤çº¿ç¨ç¯å¢ä¸ï¼æ©å®¹æ¶ä¼é æç¯å½¢é¾ææ°æ®ä¸¢å¤±ã
å¨jdk1.8ä¸ï¼å¨å¤çº¿ç¨ç¯å¢ä¸ï¼ä¼åçæ°æ®è¦ççæ åµã
JDK成长记7:3张图搞懂HashMap底层原理!
一句话讲, HashMap底层数据结构,JDK1.7数组+单向链表、JDK1.8数组+单向链表+红黑树。手机点餐源码
在看过了ArrayList、LinkedList的底层源码后,相信你对阅读JDK源码已经轻车熟路了。除了List很多时候你使用最多的还有Map和Set。接下来我将用三张图和你一起来探索下HashMap的底层核心原理到底有哪些?
首先你应该知道HashMap的核心方法之一就是put。我们带着如下几个问题来看下图:
如上图所示,put方法调用了putVal方法,之后主要脉络是:
如何计算hash值?
计算hash值的算法就在第一步,对key值进行hashCode()后,对hashCode的值进行无符号右移位和hashCode值进行了异或操作。为什么这么做呢?其实涉及了很多数学知识,简单的说就是尽可能让高和低位参与运算,可以减少hash值的冲突。
默认容量和扩容阈值是多少?
如上图所示,很明显第二步回调用resize方法,获取到默认容量为,这个在源码里是1<<4得到的,1左移4位得到的。之后由于默认扩容因子是0.,所以两者相乘就是扩容大小阈值*0.=。之后就分配了一个大小为的Node[]数组,作为Key-Value对存放的数据结构。
最后一问题是,如何进行hash寻址的php5.3.29源码?
hash寻址其实就在数组中找一个位置的意思。用的算法其实也很简单,就是用数组大小和hash值进行n-1&hash运算,这个操作和对hash取模很类似,只不过这样效率更高而已。hash寻址后,就得到了一个位置,可以把key-value的Node元素放入到之前创建好的Node[]数组中了。
当你了解了上面的三个原理后,你还需要掌握如下几个问题:
还是老规矩,看如下图:
当hash值计算一致,比如当hash值都是时,Key-Value对的Node节点还有一个next指针,会以单链表的形式,将冲突的节点挂在数组同样位置。这就是数据结构中所提到解决hash 的冲突方法之一:单链法。当然还有探测法+rehash法有兴趣的人可以回顾《数据结构和算法》相关书籍。
但是当hash冲突严重的时候,单链法会造成原理链接过长,导致HashMap性能下降,因为链表需要逐个遍历性能很差。所以JDK1.8对hash冲突的算法进行了优化。当链表节点数达到8个的时候,会自动转换为红黑树,自平衡的一种二叉树,有很多特点,比如区分红和黑节点等,具体大家可以看小灰算法图解。红黑树的遍历效率是O(logn)肯定比单链表的O(n)要好很多。
总结一句话就是php毕设源码,hash冲突使用单链表法+红黑树来解决的。
上面的图,核心脉络是四步,源码具体的就不粘出来了。当put一个之后,map的size达到扩容阈值,就会触发rehash。你可以看到如下具体思路:
情况1:如果数组位置只有一个值:使用新的容量进行rehash,即e.hash & (newCap - 1)
情况2:如果数组位置有链表,根据 e.hash & oldCap == 0进行判断,结果为0的使用原位置,否则使用index + oldCap位置,放入元素形成新链表,这里不会和情况1新的容量进行rehash与运算了,index + oldCap这样更省性能。
情况3:如果数组位置有红黑树,根据split方法,同样根据 e.hash & oldCap == 0进行树节点个数统计,如果个数小于6,将树的结果恢复为普通Node,否则使用index + oldCap,调整红黑树位置,这里不会和新的容量进行rehash与运算了,index + oldCap这样更省性能。
你有兴趣的话,可以分别画一下这三种情况的图。这里给大家一个图,假设都出发了以上三种情况结果如下所示:
上面源码核心脉络,3个if主要是校验了一堆,没做什么事情,unity开发源码之后赋值了扩容因子,不传递使用默认值0.,扩容阈值threshold通过tableSizeFor(initialCapacity);进行计算。注意这里只是计算了扩容阈值,没有初始化数组。代码如下:
竟然不是大小*扩容因子?
n |= n >>> 1这句话,是在干什么?n |= n >>> 1等价于n = n | n >>>1; 而|表示位运算中的或,n>>>1表示无符号右移1位。遇到这种情况,之前你应该学到了,如果碰见复杂逻辑和算法方法就是画图或者举例子。这里你就可以举个例子:假设现在指定的容量大小是,n=cap-1=,那么计算过程应该如下:
n是int类型,java中一般是4个字节,位。所以的二进制: 。
最后n+1=,方法返回,赋值给threshold=。再次注意这里只是计算了扩容阈值,没有初始化数组。
为什么这么做呢?一句话,为了提高hash寻址和扩容计算的的效率。
因为无论扩容计算还是寻址计算,都是二进制的位运算,效率很快。另外之前你还记得取余(%)操作中如果除数是2的幂次方则等同于与其除数减一的与(&)操作。即 hash%size = hash & (size-1)。这个前提条件是管理系统模板源码除数是2的幂次方。
你可以再回顾下resize代码,看看指定了map容量,第一次put会发生什么。会将扩容阈值threshold,这样在第一次put的时候就会调用newCap = oldThr;使得创建一个容量为threshold的数组,之后从而会计算新的扩容阈值newThr为newCap*0.=*0.=。也就是说map到了个元素就会进行扩容。
除了今天知识,技能的成长,给大家带来一个金句甜点,结束我今天的分享:坚持的三个秘诀之一目标化。
坚持的秘诀除了上一节提到的视觉化,第二个秘诀就是目标化。顾名思义,就是需要给自己定立一个目标。这里要提到的是你的目标不要定的太高了。就比如你想要增加肌肉,给自己定了一个目标,每天5组,每次个俯卧撑,你看到自己胖的身形或者海报,很有刺激,结果开始前两天非常厉害,干劲十足,特别奥利给。但是第三天,你想到要个俯卧撑,你就不想起床,就算起来,可能也会把自己撅死过去......其实你的目标不要一下子定的太大,要从微习惯开始,比如我媳妇从来没有做过俯卧撑,就让她每天从1个开始,不能多,我就怕她收不住,做多了。一开始其实从习惯开始,先变成习惯,再开始慢慢加量。量太大养不成习惯,量小才能养成习惯。很容易做到才能养成,你想想是不是这个道理?
所以,坚持的第二个秘诀就是定一个目标,可以通过小量目标,养成微习惯。比如每天你可以读五分钟书或者5分钟成长记,不要多,我想超过你也会睡着了的.....
最后,大家可以在阅读完源码后,在茶余饭后的时候问问同事或同学,你也可以分享下,讲给他听听。
一文带你读懂HashMap的原理和结构
本文旨在深入剖析Java中的Map类,特别是HashMap。在探索之前,我们先思考几个关键点,它们常在面试中被提及:Hash是什么,HashMap的继承关系,底层数据结构,JDK 1.8的优化,扩容机制,以及解决冲突的方法。了解这些,对你的工作或求职大有裨益。
首先,让我们从HashMap的定义开始。HashMap是Java中的哈希表,它的目标是提供快速的查询、存储和修改性能。哈希表原理是利用hash函数将数据转换为数组的索引,从而实现快速访问。在Java中,HashMap位于`java.util`包中,其继承自`AbstractMap`和`Cloneable`,但不直接实现`Collection`接口。
早期的HashMap(JDK 1.7之前)使用数组和链表来处理hash冲突。每个`Entry`对象存储键值对,如果冲突,就在数组对应位置形成链表。然而,当冲突过多导致链表过长,查询效率会降低。为解决这个问题,JDK 1.8引入了红黑树,但并非所有情况都使用,而是根据性能优化进行选择。
接下来会深入讲解HashMap的底层结构变化、扩容机制、性能分析,以及如何在实际操作中正确使用。这些知识点在面试中是常见的考察内容。如果你对这些话题感兴趣,记得继续关注后续内容。谢谢!
concurrenthashmap1.8源码如何详细解析?
ConcurrentHashMap在JDK1.8的线程安全机制基于CAS+synchronized实现,而非早期版本的分段锁。
在JDK1.7版本中,ConcurrentHashMap采用分段锁机制,包含一个Segment数组,每个Segment继承自ReentrantLock,并包含HashEntry数组,每个HashEntry相当于链表节点,用于存储key、value。默认支持个线程并发,每个Segment独立,互不影响。
对于put流程,与普通HashMap相似,首先定位至特定的Segment,然后使用ReentrantLock进行操作,后续过程与HashMap基本相同。
get流程简单,通过hash值定位至segment,再遍历链表找到对应元素。需要注意的是,value是volatile的,因此get操作无需加锁。
在JDK1.8版本中,线程安全的关键在于优化了put流程。首先计算hash值,遍历node数组。若位置为空,则通过CAS+自旋方式初始化。
若数组位置为空,尝试使用CAS自旋写入数据;若hash值为MOVED,表示需执行扩容操作;若满足上述条件均不成立,则使用synchronized块写入数据,同时判断链表或转换为红黑树进行插入。链表操作与HashMap相同,链表长度超过8时转换为红黑树。
get查询流程与HashMap基本一致,通过key计算位置,若table对应位置的key相同则返回结果;如为红黑树结构,则按照红黑树规则获取;否则遍历链表获取数据。
HashMap 的初始值和最大值和扩容因子
HashMap 初始化默认值为。你可以通过构造函数自定义初始值。
最大值为1<<,这个值表示2的次方。在HashMap的源码注释中有明确说明。
理解左移操作符<<是关键,它执行二进制左移操作。例如,1 << x 等同于2的x次方。
当存储元素超过最大值时,HashMap会强制将数组大小capacity设置为最大值。
初始化和扩容时,数组大小capacity被限制在两个地方:通过tableSizeFor()函数设置为2的幂次,不超过最大值;或在容量翻倍时,设置为1 << ,但实际容量为Integer.MAX_VALUE避免整型溢出。
加载因子,即扩容因子,决定何时进行扩容。比如,加载因子为0.5,初始化容量为时,当元素数达到8个,HashMap会进行扩容。加载因子为0.时,考虑性能与容量平衡。
以上参数在JDK源代码中定义,是使用HashMap的基础。
hashmapåºå±å®ç°åç
hashmapåºå±å®ç°åçæ¯SortedMapæ¥å£è½å¤æå®ä¿åçè®°å½æ ¹æ®é®æåºï¼é»è®¤æ¯æé®å¼çååºæåºï¼ä¹å¯ä»¥æå®æåºçæ¯è¾å¨ï¼å½ç¨IteratoréåTreeMapæ¶ï¼å¾å°çè®°å½æ¯æè¿åºçãå¦æ使ç¨æåºçæ å°ï¼å»ºè®®ä½¿ç¨TreeMapãå¨ä½¿ç¨TreeMapæ¶ï¼keyå¿ é¡»å®ç°Comparableæ¥å£æè å¨æé TreeMapä¼ å ¥èªå®ä¹çComparatorï¼å¦åä¼å¨è¿è¡æ¶æåºjava.lang.ClassCastExceptionç±»åçå¼å¸¸ã
Hashtableæ¯éçç±»ï¼å¾å¤æ å°ç常ç¨åè½ä¸HashMap类似ï¼ä¸åçæ¯å®æ¿èªDictionaryç±»ï¼å¹¶ä¸æ¯çº¿ç¨å®å ¨çï¼ä»»ä¸æ¶é´åªæä¸ä¸ªçº¿ç¨è½åHashtable
ä»ç»æå®ç°æ¥è®²ï¼HashMapæ¯ï¼æ°ç»+é¾è¡¨+红é»æ ï¼JDK1.8å¢å äºçº¢é»æ é¨åï¼å®ç°çã
æ©å±èµæ
ä»æºç å¯ç¥ï¼HashMapç±»ä¸æä¸ä¸ªé常éè¦çå段ï¼å°±æ¯ Node[] tableï¼å³åå¸æ¡¶æ°ç»ãNodeæ¯HashMapçä¸ä¸ªå é¨ç±»ï¼å®ç°äºMap.Entryæ¥å£ï¼æ¬è´¨æ¯å°±æ¯ä¸ä¸ªæ å°(é®å¼å¯¹)ï¼é¤äºKï¼Vï¼è¿å å«hashånextã
HashMapå°±æ¯ä½¿ç¨åå¸è¡¨æ¥åå¨çãåå¸è¡¨ä¸ºè§£å³å²çªï¼éç¨é¾å°åæ³æ¥è§£å³é®é¢ï¼é¾å°åæ³ï¼ç®åæ¥è¯´ï¼å°±æ¯æ°ç»å é¾è¡¨çç»åãå¨æ¯ä¸ªæ°ç»å ç´ ä¸é½ä¸ä¸ªé¾è¡¨ç»æï¼å½æ°æ®è¢«Hashåï¼å¾å°æ°ç»ä¸æ ï¼ææ°æ®æ¾å¨å¯¹åºä¸æ å ç´ çé¾è¡¨ä¸ã
å¦æåå¸æ¡¶æ°ç»å¾å¤§ï¼å³ä½¿è¾å·®çHashç®æ³ä¹ä¼æ¯è¾åæ£ï¼å¦æåå¸æ¡¶æ°ç»æ°ç»å¾å°ï¼å³ä½¿å¥½çHashç®æ³ä¹ä¼åºç°è¾å¤ç¢°æï¼æ以就éè¦å¨ç©ºé´ææ¬åæ¶é´ææ¬ä¹é´æè¡¡ï¼å ¶å®å°±æ¯å¨æ ¹æ®å®é æ åµç¡®å®åå¸æ¡¶æ°ç»ç大å°ï¼å¹¶å¨æ¤åºç¡ä¸è®¾è®¡å¥½çhashç®æ³åå°Hash碰æã