【草根金融源码】【网站搭建源码技术分享】【智能硬件开发项目源码】任务模块源码_任务模块源码是什么

时间:2024-12-22 20:01:35 来源:笑傲源码翻译教程 分类:热点

1.Ray 源码解析(一):任务的任务任务状态转移和组织形式
2.Rust Async: smol源码分析-Executor篇
3.UE4源码剖析——异步与并行 中篇 之 Thread
4. gradle源码系列3Project用法示例方法总结源码分析
5.Nacos源码之配置管理 三TaskManager 任务管理的使用
6.如何实现定时任务- Java Timer/TimerTask 源码解析

任务模块源码_任务模块源码是什么

Ray 源码解析(一):任务的状态转移和组织形式

       Ray源码解析系列的第一篇着重于任务的状态管理和组织形式。Ray的模块模块核心设计在于其细粒度、高吞吐的源码源码任务调度,依赖于共享内存的任务任务Plasma存储输入和输出,以及Redis的模块模块GCS来管理所有状态,实现去中心化的源码源码草根金融源码调度。任务分为无状态的任务任务Task和有状态的Actor Method,后者包括Actor的模块模块构造函数和成员函数。

       Ray支持显式指定任务的源码源码资源约束,通过ResourcesSet量化节点资源,任务任务用于分配和回收。模块模块在调度时,源码源码需找到满足任务资源要求的任务任务节点。由于Task输入在分布式存储中,模块模块调度后需要传输依赖。源码源码对于Actor Method,其与Actor绑定,会直接调度到对应的节点。

       状态变化如任务状态转移、资源依赖等信息,都存储在GCS中。任务状态更改需更新GCS,失联或宕机时,根据GCS中的状态信息重试任务。通过GCS事件订阅驱动任务状态变化。

       文章主要讲述了任务状态的组织方式,如任务队列(TaskQueue)和调度队列(SchedulingQueue)的运作,以及状态转移图和状态枚举类的定义。例如,TaskQueue负责任务的增删查改,其中ReadyQueue通过资源映射优化调度决策。此外,文中还解释了一些关键概念,如Task Required Resources、Task argument、Object、Object Store、Node/Machine等。

       后续文章将深入探讨调度策略和资源管理。让我们期待下篇的精彩内容。

Rust Async: smol源码分析-Executor篇

       本文深入探讨了smol异步运行时中的Executor组件,尤其关注了Executor的实现细节。在smol的异步框架中,Executor扮演了核心角色,主要负责执行Future,并在多线程环境中调度和管理任务。

       Executor分为三种类型:ThreadLocalExecutor、Blocking Executor、网站搭建源码技术分享Work Stealing Executor。ThreadLocalExecutor用于处理不能实现Send特性的Future,通过使用并发和非并发队列,减少了跨线程的同步开销。Blocking Executor则允许执行阻塞任务,并通过动态地开启线程来应对任务的增加,从而提高了资源的利用率。Work Stealing Executor则通过工作窃取的方式,实现了线程间的任务负载均衡,每个工作线程通过主动调用smol::run加入工作环境。

       在Executor的实现中,ThreadLocalExecutor通过线程局部变量来管理任务的生命周期,确保了任务与线程的绑定。Blocking Executor通过自适应地开启线程,以应对任务的增加或减少,从而保持了系统的高效运行。Work Stealing Executor通过工作窃取的方式,实现了任务在多个线程间的合理分配,提高了系统的整体性能。

       每一个Executor的实现都紧密围绕着任务的调度、执行和管理,通过不同策略满足了不同场景下的需求。ThreadLocalExecutor适用于无法实现Send特性的Future,Blocking Executor能够应对阻塞任务的执行,而Work Stealing Executor则通过动态负载均衡实现了任务的高效分配。

       在使用smol异步运行时时,需要注意到几个关键点。async_std的运行时采用了延迟实例化、按需自动启动的策略,简化了使用体验。然而,smol目前采用的是手动启用运行时的策略,可能导致运行时panic问题,用户需要额外的配置来启动整个工作窃取运行环境。因此,正确配置和启动smol运行时对于开发者来说是至关重要的。

       总结而言,smol的Executor组件设计精妙,通过不同类型的Executor满足了多样化的异步任务需求。其简洁而高效的设计,使得开发者能够轻松地将现有的库进行异步化处理,极大地提高了开发效率和系统性能。未来,随着smol的发展和完善,其在异步编程领域的应用将更加广泛。

UE4源码剖析——异步与并行 中篇 之 Thread

       我们知道UE中的异步框架分为TaskGraph与Thread两种,上篇教程我们学习了TaskGraph,智能硬件开发项目源码它擅长处理有依赖关系的短任务;本篇教程我们将学习Thread,它与TaskGraph相反,它更擅长于处理长任务。而下一篇文章,我们则会承接Thread,去学习一下引擎中一些重要的线程。

       Thread擅长处理长任务,从长任务生命周期这个层面来看,我们可以先把长任务分为两类:常驻型长任务与非常驻型长任务。

       常驻型长任务侧重于并行,通常用于监听式服务,例如网络传输,使用单独的线程对网络进行监听,每当有网络数据包到达时,线程接收并处理后,不会立即结束,而是重置部分状态,继续监听,等待下一轮数据包。

       非常驻型长任务侧重于异步,通常用于数据处理,例如主线程为了提高性能,避免卡顿,会将一些重负载的运算任务分发给分线程处理,可能分批给多条分线程,主线程继续运行其他逻辑。任务处理完成后,将结果返回给主线程,分线程可销毁。

       接下来,我们通过两个例子学习Thread的使用。

       计算由N到M(N和M为大数字)所有数字的和。使用Thread异步调用,将计算操作交由分线程执行,计算完成后再通知主线程结果,代码实现如下:

       逻辑分为两部分:启动分线程计算数字和,使用Async函数,参数为EAsyncExecution::Thread,创建新线程执行。学习Async函数用法,该函数返回TFuture对象,代表未来状态,当前无法获取结果,但在未来某个时刻状态变为Ready,此时可通过TFuture获取结果。

       主线程注册回调,等待分线程计算完成,kdj买卖指标合集源码使用TFuture的Then函数,完成时触发注册的回调,也可使用Wait系列函数等待计算完成。

       接下来学习常驻型任务使用。

       定义玩家血量上限点,当前点,当血量未满时,每0.2秒恢复1点血量。代码实现分为创建生命治疗仪FRunnable对象、重写Run函数、创建FRunnableThread线程、测试恢复功能和释放线程资源。

       生命治疗仪创建与测试完整代码如下,可验证生命恢复功能和暂停与恢复。

       UE4中的FRunnable与FRunnableThread提供创建常驻型任务所需接口。无论是常驻型还是非常驻型,底层实现相同,都是使用FRunnableThread线程。

       FRunnableThread线程结构包含标识符、逻辑功能、效率与性能、辅助调试字段。线程创建与生命周期分为创建FRunnable类对象、创建FRunnableThread对象两步,通过FRunnable的生命周期管理实现线程运行与停止。

       UE4线程管理流程包括继承并创建FRunnable类对象、创建FRunnableThread对象,生命治疗仪线程创建代码。

       UE4中的几种异步方式底层使用线程实现,学习了线程类型、创建、生命周期、销毁方法,为下篇学习引擎特殊线程打下基础。

 gradle源码系列3Project用法示例方法总结源码分析

       在Gradle构建系统中,Project接口是核心,负责从构建文件中交互并提供访问Gradle所有功能的途径。通过Project对象,开发者能执行诸如任务管理、依赖关系处理、配置管理等关键构建任务。

       构建启动时,每个参与的项目都会生成一个Project对象。项目内部本质上是一系列Task对象的集合,每个Task执行特定工作,如编译代码、运行测试或打包文件。2022草莓小说系统源码创建和定位Task主要通过TaskContainer进行,通过方法如create()和getByName()来完成。

       项目依赖于多个组件以完成任务,同时也生成多种构件供其他项目使用。依赖项组织成配置,从存储库中获取并上传。配置管理、依赖项处理、构件管理和存储库管理分别通过特定方法如getConfigurations()、getDependencies()、getArtifacts()和getRepositories()实现。

       项目构建结构化,以项目层次方式排列。每个项目具有唯一标识的名称和完整路径。插件提供了模块化和重用配置的功能,通过apply方法或PluginDependenciesSpec脚本块应用。

       项目属性通过构建文件动态配置。脚本中使用的所有属性或方法,最终委托给关联的Project对象。这意味着脚本可以直接访问Project接口的方法和属性。

       额外属性需在"ext"命名空间下定义。一旦定义,该属性立即在所属对象(如Project、Task和子项目)上可用,支持读取和更新。

       项目方法作用域广泛,支持在不同层面搜索和调用方法。以上示例展示了如何使用Project类的常见方法,包括设置项目属性、配置依赖、创建任务、获取子项目等。

Nacos源码之配置管理 三TaskManager 任务管理的使用

       在Nacos的源码中,TaskManager是一个核心组件,它负责管理一系列必须成功执行的任务,以单线程的方式确保任务的执行。TaskManager内部包含待处理的AbstractTask集合和对应的TaskProcessor,后者是执行任务的接口,不同的任务类型需实现自己的执行逻辑。以配置中心的配置文件Dump为例,Nacos会定期将数据库中的数据备份到磁盘,这个操作通过定义的DumpTask和其对应的DumpProcessor来实现。

       DumpTask定义了必要的属性,而DumpProcessor则是专门处理DumpTask的任务处理器,其核心功能是将配置文件保存到磁盘并计算MD5。类似地,DumpAllTask和DumpAllBetaTask也有对应的处理器,如DumpAllProcessor和DumpAllBetaProcessor。

       DumpAllTask的任务触发和执行发生在DumpService类中,该服务负责初始化配置信息的备份。在初始化时,会创建一个DumpAllProcessor执行器,并启动一个线程,将默认执行器设置为这个处理器。此后,每隔十分钟,DumpService会向TaskManager添加一个新的DumpAllTask,由线程processingThread处理并执行。

如何实现定时任务- Java Timer/TimerTask 源码解析

       日常实现各种服务端系统时,我们一定会有一些定时任务的需求。比如会议提前半小时自动提醒,异步任务定时/周期执行等。那么如何去实现这样的一个定时任务系统呢? Java JDK提供的Timer类就是一个很好的工具,通过简单的API调用,我们就可以实现定时任务。

       现在就来看一下java.util.Timer是如何实现这样的定时功能的。

       首先,我们来看一下一个使用demo

       基本的使用方法:

       加入任务的API如下:

       可以看到API方法内部都是调用sched方法,其中time参数下一次任务执行时间点,是通过计算得到。period参数为0的话则表示为一次性任务。

       那么我们来看一下Timer内部是如何实现调度的。

       内部结构

       先看一下Timer的组成部分:

       Timer有3个重要的模块,分别是 TimerTask, TaskQueue, TimerThread

       那么,在加入任务之后,整个Timer是怎么样运行的呢?可以看下面的示意图:

       图中所示是简化的逻辑,多个任务加入到TaskQueue中,会自动排序,队首任务一定是当前执行时间最早的任务。TimerThread会有一个一直执行的循环,从TaskQueue取队首任务,判断当前时间是否已经到了任务执行时间点,如果是则执行任务。

       工作线程

       流程中加了一些锁,用来避免同时加入TimerTask的并发问题。可以看到sched方法的逻辑比较简单,task赋值之后入队,队列会自动按照nextExecutionTime排序(升序,排序的实现原理后面会提到)。

       从mainLoop的源码中可以看出,基本的流程如下所示

       当发现是周期任务时,会计算下一次任务执行的时间,这个时候有两种计算方式,即前面API中的

       优先队列

       当从队列中移除任务,或者是修改任务执行时间之后,队列会自动排序。始终保持执行时间最早的任务在队首。 那么这是如何实现的呢?

       看一下TaskQueue的源码就清楚了

       可以看到其实TaskQueue内部就是基于数组实现了一个最小堆 (balanced binary heap), 堆中元素根据 执行时间nextExecutionTime排序,执行时间最早的任务始终会排在堆顶。这样工作线程每次检查的任务就是当前最早需要执行的任务。堆的初始大小为,有简单的倍增扩容机制。

       TimerTask 任务有四种状态:

       Timer 还提供了cancel和purge方法

       常见应用

       Java的Timer广泛被用于实现异步任务系统,在一些开源项目中也很常见, 例如消息队列RocketMQ的 延时消息/消费重试 中的异步逻辑。

       上面这段代码是RocketMQ的延时消息投递任务 ScheduleMessageService 的核心逻辑,就是使用了Timer实现的异步定时任务。

       不管是实现简单的异步逻辑,还是构建复杂的任务系统,Java的Timer确实是一个方便实用,而且又稳定的工具类。从Timer的实现原理,我们也可以窥见定时系统的一个基础实现:线程循环 + 优先队列。这对于我们自己去设计相关的系统,也会有一定的启发。

深度解析sync WaitGroup源码

       waitGroup

       waitGroup 是 Go 语言中并发编程中常用的语法之一,主要用于解决并发和等待问题。它是 sync 包下的一个子组件,特别适用于需要协调多个goroutine执行任务的场景。

       waitGroup 主要用于解决goroutine间的等待关系。例如,goroutineA需要在等待goroutineB和goroutineC这两个子goroutine执行完毕后,才能执行后续的业务逻辑。通过使用waitGroup,goroutineA在执行任务时,会在检查点等待其他goroutine完成,确保所有任务执行完毕后,goroutineA才能继续进行。

       在实现上,waitGroup 通过三个方法来操作:Add、Done 和 Wait。Add方法用于增加计数,Done方法用于减少计数,Wait方法则用于在计数为零时阻塞等待。这些方法通过原子操作实现同步安全。

       waitGroup的源码实现相对简洁,主要涉及数据结构设计和原子操作。数据结构包括了一个 noCopy 的辅助字段以及一个复合意义的 state1 字段。state1 字段的组成根据目标平台的不同(位或位)而有所不同。在位环境下,state1的第一个元素是等待线程数,第二个元素是 waitGroup 计数值,第三个元素是信号量。而在位环境下,如果 state1 的地址不是位对齐的,那么 state1 的第一个元素是信号量,后两个元素分别是等待线程数和计数值。

       waitGroup 的核心方法 Add 和 Wait 的实现原理如下:

       Add方法通过原子操作增加计数值。当执行 Add 方法时,首先将 delta 参数左移位,然后通过原子操作将其添加到计数值上。需要注意的是,delta 的值可正可负,用于在调用 Done 方法时减少计数值。

       Done方法通过调用 Add(-1)来减少计数值。

       Wait方法则持续检查 state 值。当计数值为零时,表示所有子goroutine已完成,调用者无需等待。如果计数值大于零,则调用者会变成等待者,加入等待队列,并阻塞自己,直到所有任务执行完毕。

       通过使用waitGroup,开发者可以轻松地协调和同步并发任务的执行,确保所有任务按预期顺序完成。这在多goroutine协同工作时,尤其重要。掌握waitGroup的使用和源码实现,将有助于提高并发编程的效率和可维护性。

       如果您对并发编程感兴趣,希望持续关注相关技术更新,请通过微信搜索「迈莫coding」,第一时间获取更多深度解析和实战指南。

技术人生阅读源码——Quartz源码分析之任务的调度和执行

       Quartz源码分析:任务调度与执行剖析

       Quartz的调度器实例化时启动了调度线程QuartzSchedulerThread,它负责触发到达指定时间的任务。该线程通过`run`方法实现调度流程,包含三个主要阶段:获取到达触发时间的triggers、触发triggers、执行triggers对应的jobs。

       获取到达触发时间的triggers阶段,通过`JobStore`接口的`acquireNextTriggers`方法获取,由`RAMJobStore`实现具体逻辑。触发triggers阶段,调用`triggersFired`方法通知`JobStore`触发triggers,处理包括更新trigger状态与保存触发过程相关数据等操作。执行triggers对应jobs阶段,真正执行job任务,先构造job执行环境,然后在子线程中执行job。

       job执行环境通过`JobRunShell`提供,确保安全执行job,捕获异常,并在任务完成后根据`completion code`更新trigger。job执行环境包含job对象、trigger对象、触发时间、上一次触发时间与下一次触发时间等数据。Quartz通过线程池提供多线程服务,使用`SimpleThreadPool`实例化`WorkerThread`来执行job任务,最终调用`Job`的`execute`方法实现业务逻辑。

       综上所述,Quartz通过精心设计的线程调度与执行流程,确保了任务的高效与稳定执行,展示了其强大的任务管理能力。

硬核干货:4W字从源码上分析JUC线程池ThreadPoolExecutor的实现原理

       深入剖析JUC线程池ThreadPoolExecutor的执行核心

       早有计划详尽解读ThreadPoolExecutor的源码,因事务繁忙未能及时整理。在之前的文章中,我们曾提及Doug Lea设计的Executor接口,其顶层方法execute()是线程池扩展的基础。本文将重点关注ThreadPoolExecutor#execute()的实现,结合简化示例,逐步解析。

       ThreadPoolExecutor的核心功能包括固定的核心线程、额外的非核心线程、任务队列和拒绝策略。它的设计巧妙地运用了JUC同步器框架AbstractQueuedSynchronizer(AQS),以及位操作和CAS技术。以核心线程为例,设计上允许它们在任务队列满时阻塞,或者在超时后轮询,而非核心线程则在必要时创建。

       创建ThreadPoolExecutor时,我们需要指定核心线程数、最大线程数、任务队列类型等。当核心线程和任务队列满载时,会尝试添加额外线程处理新任务。线程池的状态控制至关重要,通过整型变量ctl进行管理和状态转换,如RUNNING、SHUTDOWN、STOP等,状态控制机制包括工作线程上限数量的位操作。

       接下来,我们深入剖析execute()方法。首先,方法会检查线程池状态和工作线程数量,确保在需要时添加新线程。这里涉及一个疑惑:为何需要二次检查?这主要是为了处理任务队列变化和线程池状态切换。任务提交流程中,addWorker()方法负责创建工作线程,其内部逻辑复杂,包含线程中断和适配器Worker的创建。

       Worker内部类是线程池核心,它继承自AQS,实现Runnable接口。Worker的构造和run()方法共同确保任务的执行,同时处理线程中断和生命周期的终结。getTask()方法是工作线程获取任务的关键,它会检查任务队列状态和线程池大小,确保资源的有效利用。

       线程池关闭操作通过shutdown()、shutdownNow()和awaitTermination()方法实现,它们涉及线程中断、任务队列清理和状态更新等步骤,以确保线程池的有序退出。在这些方法中,可重入锁mainLock和条件变量termination起到了关键作用,保证了线程安全。

       ThreadPoolExecutor还提供了钩子方法,允许开发者在特定时刻执行自定义操作。除此之外,它还包含了监控统计、任务队列操作等实用功能,每个功能的实现都是对execute()核心逻辑的扩展和优化。

       总的来说,ThreadPoolExecutor的execute()方法是整个线程池的核心,它的实现原理复杂而精细。后续将陆续分析ExecutorService和ScheduledThreadPoolExecutor的源码,深入探讨线程池的扩展和调度机制。敬请关注,期待下文的详细解析。