1.Linux虚拟网络中的网网macvlan设备源码分析
2.Linux如何获取内核源码linux获取内核源码
3.ifconfig源码分析
4.linux 5.15 ncsi源码分析
5.Linux内核源码解析---EPOLL实现4之唤醒等待进程与惊群问题
6.从 Linux源码 看 Socket(TCP)的accept
Linux虚拟网络中的macvlan设备源码分析
Linux虚拟网络中的macvlan设备源码分析
macvlan是Linux内核提供的一种新特性,用于在单个物理网卡上创建多个独立的卡源虚拟网卡。支持macvlan的原理内核版本包括v3.9-3.和4.0+,推荐使用4.0+版本。网网macvlan通常作为内核模块实现,卡源可通过以下命令检测系统是原理adma指标源码否支持: 1. modprobe macvlan - 加载模块 2. lsmod | grep macvlan - 确认是否已加载 对于学习和资源分享,可以加入Linux内核源码交流群获取相关学习资料,网网前名成员可免费领取价值的卡源内核资料包。 macvlan的原理工作原理与VLAN不同,macvlan子接口拥有独立的网网MAC地址和IP配置,每个子接口可以视为一个独立的卡源网络环境。通过子接口,原理macvlan可以实现流量隔离,网网根据包的卡源目的MAC地址决定转发给哪个虚拟网卡。macvlan的原理网络模式包括private、vepa、bridge和passthru,分别提供不同的通信和隔离策略。 与传统VLAN相比,macvlan在子接口独立性和广播域共享上有所不同。macvlan的子接口使用独立MAC地址,而VLAN共享主接口的MAC。此外,macvlan可以直接接入到VM或network namespace,而VLAN通常通过bridge连接。 总的来说,macvlan是Linux网络配置中的强大工具,理解其源码有助于深入掌握其内部机制。对于网络配置和性能优化的探讨,可以参考以下文章和视频:Linux内核性能优化实战演练(一)
理解网络数据在内核中流转过程
Linux服务器数据恢复案例分析
虚拟文件系统操作指南
Linux共享内存同步方法
最后,关于macvlan与VLAN的详细对比,以及mactap技术,可以参考相关技术社区和文章,如内核技术中文网。Linux如何获取内核源码linux获取内核源码
Linux获取内核源码
Linux是源码进行算术右移例题一款开源的操作系统,它的内核源码可以免费获取,但正确获取内核源码的方式可以使我们的任务更轻松。那么,Linux如何获取内核源码呢?在以下小编将为您介绍几种获取简单、便捷的方法。
首先,我们可以使用Linux Network Mirroring来获取内核源码。Linux Network mirroring是一种使用HTTP和FTP协议获取Linux内核源码的服务,我们可以在Linux.org上搜索并下载最新内核源码,内核源码包的文件名格式为 linux- . . . . . . . . . . . . . . . . . . . . . . . .-,下载后将文件解压即可获得Linux内核源码。
第二,我们也可以使用GitHub获取Linux内核源码,GitHub是一个强大的开源代码托管平台,在其上有大量的开源项目以及Linux开发者的源码。我们可以使用GitHub的搜索功能搜索linux kernel,在搜索结果中选择torvalds/linux,然后点击Clone或download,就可以将Linux获得内核源码下载到本地了。
最后,您还可以使用Linux Kernel Archive来获取内核源码。Linux Kernel Archive也是一种使用HTTP和FTP协议获取Linux内核源码的服务,除了可以获取最新的内核源码之外,还提供了之前版本的内核源码,我们可以在主站上找到所有的内核源码,然后根据需要下载相关内核源码。
以上就是Linux获取内核源码的几种方法,使用以上任何一种方法都可以获取到Linux内核源码,您可以根据自己的情况进行选择。如果想要定制或修改Linux内核,那么就必不可少的要获取最新的Linux内核源码。
ifconfig源码分析
在ifconfig源码的main函数中,程序首先处理以 '-' 开始的参数,如 '-a' 和 '-s',matlab源码计算器并判断其作用。接着,尝试打开内核支持的所有协议的套接字,通过调用sockets_open函数实现,如果失败,会输出错误信息并退出程序。 如果命令行参数为0,意味着显示所有网卡的信息,程序会调用if_print函数。如果用户提供了一个网卡名称,程序会将其复制到ifr.ifr_name中,并处理下一个参数,可能是协议簇名或选项。如果找到协议簇,将其af属性赋值给addr_family,并保存对应的套接字描述符skfd。 接下来,程序进入一个循环,处理剩余的参数。如果是开关参数,调用set_flag或clr_flag函数处理;如果是功能参数,直接通过ioctl函数处理。在处理IP地址时,会根据协议簇类型调用相应的ioctl函数,如SIOCSIFADDR,来设置接口的地址信息。扩展资料
ifconfig是linux中用于显示或配置网络设备(网络接口卡)的命令,英文全称是network interfaces configuring。配置网卡的IP地址语法例:ifconfig eth0 ..0.1 netmask ...0linux 5. ncsi源码分析
深入剖析Linux 5. NCSI源码:构建笔记本与BMC通信桥梁 NCSI(Network Configuration and Status Interface),在5.版本的Linux内核中,为笔记本与BMC(Baseboard Management Controller)以及服务器操作系统之间的同网段通信提供了强大支持。让我们一起探索关键的NCSI网口初始化流程,以及其中的关键结构体和函数。1. NCSI网口初始化:驱动注册
驱动程序初始化始于ftgmac_probe,pdf批量转pdf源码这是关键步骤,它会加载并初始化struct ncsi_dev_priv,包含了驱动的核心信息,如NCSI_DEV_PROBED表示最终的拓扑结构,NCSI_DEV_HWA则启用硬件仲裁机制。关键结构体剖析
struct ncsi_dev_priv包含如下重要字段:
request表,记录NCSI命令的执行状态;
active_package,存储活跃的package信息;
NCSI_DEV_PROBED,表示连接状态的最终拓扑;
NCSI_DEV_HWA,启用硬件资源的仲裁功能。
命令与响应的承载者
struct ncsi_request是NCSI命令和结果的核心容器,包含请求ID、待处理请求数、channel队列以及package白名单等。每个请求都包含一个唯一的ID,用于跟踪和管理。数据包管理与通道控制
从struct ncsi_package到struct ncsi_channel,每个通道都有其特定状态和过滤器设置。multi_channel标志允许多通道通信,channel_num则记录总通道数量。例如,struct ncsi_channel_mode用于设置通道的工作模式,如NCSI_MODE_LINK表示连接状态。发送与接收操作
struct ncsi_cmd_arg是发送NCSI命令的关键结构,包括驱动私有信息、命令类型、ID等。在ncsi_request中,每个请求记录了请求ID、使用状态、标志,以及与网络链接相关的详细信息。ncsi_dev_work函数:工作队列注册与状态处理
在行的ncsi_register_dev函数中,初始化ncsi工作队列,php学习框架源码外包根据网卡状态执行通道初始化、暂停或配置。ncsi_rcv_rsp处理NCSI报文,包括网线事件和命令响应,确保通信的稳定和高效。扩展阅读与资源
深入理解NCSI功能和驱动probe过程,可以参考以下文章和资源:Linux内核ncsi驱动源码分析(一)
Linux内核ncsi驱动源码分析(二)
华为Linux下NCSI功能切换指南
NCSI概述与性能笔记
浅谈NCSI在Linux的实现和应用
驱动probe执行过程详解
更多技术讨论:OpenBMC邮件列表和CSDN博客
通过以上分析,NCSI源码揭示了如何构建笔记本与BMC的高效通信网络,为开发者提供了深入理解Linux内核NCSI模块的关键信息。继续探索这些资源,你将能更好地运用NCSI技术来优化你的系统架构。
Linux内核源码解析---EPOLL实现4之唤醒等待进程与惊群问题
在Linux内核源码的EPOLL实现中,第四部分着重探讨了数据到来时如何唤醒等待进程以及惊群问题。当网卡接收到数据,DMA技术将数据复制到内存RingBuffer,通过硬中断通知CPU,然后由ksoftirqd线程处理,最终数据会进入socket接收队列。虽然ksoftirqd的创建过程不在本节讨论,但核心是理解数据如何从协议层传递到socket buffer。
在tcp_ipv4.c中,当接收到socket buffer时,会首先在连接表和监听表中寻找对应的socket。一旦找到,进入tcp_rcv_established函数,这里会检查socket是否准备好接收数据,通过调用sock_data_ready,其初始值为sock_def_readable,进而进入wake_up函数,唤醒之前挂上的wait_queue_t节点。
在wake_up方法中,会遍历链表并回调ep_poll_callback,这个函数是epoll的核心逻辑。然而,如果epoll的设置没有启用WQ_FLAG_EXCLUSIVE,就会导致惊群效应,即唤醒所有阻塞在当前epoll的进程。这在default_wake_function函数中体现,如果没有特殊标记,进程会立即被唤醒并进入调度。
总结来说,epoll的唤醒过程涉及socket buffer、协议层处理、链表操作以及回调函数,其中惊群问题与默认的唤醒策略密切相关。理解这些细节,有助于深入理解Linux内核中EPOLL的异步操作机制。
从 Linux源码 看 Socket(TCP)的accept
从 Linux 源码角度探究 Server 端 Socket 的 Accept 过程(基于 Linux 3. 内核),以下是一系列关键步骤的解析。
创建 Server 端 Socket 需依次执行 socket、bind、listen 和 accept 四个步骤。其中,socket 系统调用创建了一个 SOCK_STREAM 类型的 TCP Socket,其操作函数为 TCP Socket 所对应的 ops。在进行 Accept 时,关键在于理解 Accept 的功能,即创建一个新的 Socket 与对端的 connect Socket 进行连接。
在具体实现中,核心函数 sock->ops->accept 被调用。关注 TCP 实现即 inet_stream_ops->accept,其进一步调用 inet_accept。核心逻辑在于 inet_csk_wait_for_connect,用于管理 Accept 的超时逻辑,避免在超时时惊群现象的发生。
EPOLL 的实现中,"惊群"现象是由水平触发模式下 epoll_wait 重新塞回 ready_list 并唤醒多个等待进程导致的。虽然 epoll_wait 自身在有中断事件触发时不惊群,但水平触发机制仍会造成类似惊群的效应。解决此问题,通常采用单线程专门处理 accept,如 Reactor 模式。
针对"惊群"问题,Linux 提供了 so_reuseport 参数,允许多个 fd 监听同一端口号,内核中进行负载均衡(Sharding),将 accept 任务分散到不同 Socket 上。这样,可以有效利用多核能力,提升 Socket 分发能力,且线程模型可改为多线程 accept。
在 accept 过程中,accept_queue 是关键成员,用于填充添加待处理的连接。用户线程通过 accept 系统调用从队列中获取对应的 fd。值得注意的是,当用户线程未能及时处理时,内核可能会丢弃三次握手成功的连接,导致某些意外现象。
综上所述,理解 Linux Socket 的 Accept 过程需要深入源码,关注核心函数与机制,以便优化 Server 端性能,并有效解决"惊群"等问题,提升系统处理能力。
linux源码解读(三十二):dpdk原理概述(一)
Linux源码解析(三十二):深入理解DPDK原理(一)
几十年来,随着技术的发展,传统操作系统和网络架构在处理某些业务需求时已显得力不从心。为降低修改底层操作系统的高昂成本,人们开始在应用层寻求解决方案,如协程和QUIC等。然而,一个主要问题在于基于内核的网络数据IO,其繁琐的处理流程引发了效率低下和性能损耗。
传统网络开发中,数据收发依赖于内核的receive和send函数,经过一系列步骤:网卡接收数据、硬件中断通知、数据复制到内存、内核线程处理、协议栈层层剥开,最终传递给应用层。这种长链式处理方式带来了一系列问题,如上下文切换和协议栈开销。
为打破这种限制,Linux引入了UIO(用户空间接口设备)机制,允许用户空间直接控制网卡,跳过内核协议栈,从而大大简化了数据处理流程。UIO设备提供文件接口,通过mmap映射内存,允许用户直接操作设备数据,实现绕过内核控制网络I/O的设想。
DPDK(Data Plane Development Kit)正是利用了UIO的优点,如Huge Page大页技术减少TLB miss,内存池优化内存管理,Ring无锁环设计提高并发性能,以及PMD poll-mode驱动避免中断带来的开销。它采用轮询而非中断处理模式,实现零拷贝、低系统调用、减少上下文切换等优势。
DPDK还注重内存分配和CPU亲和性,通过NUMA内存优化减少跨节点访问,提高性能,并利用CPU亲和性避免缓存失效,提升执行效率。学习DPDK,可以深入理解高性能网络编程和虚拟化领域的技术,更多资源可通过相关学习群获取。
深入了解DPDK原理,可以从一系列资源开始,如腾讯云博客、CSDN博客、B站视频和LWN文章,以及Chowdera的DPDK示例和腾讯云的DPDK内存池讲解。
源:cnblogs.com/thesevenths...
Linux网卡文件配置linux网卡文件
在Linux系统中,若需修改网卡名称,可遵循以下步骤:
1. 打开`/etc/udev/rules.d/-persistent-net.rules`文件,将`eth0`更改为`em1`,`eth1`更改为`em2`。仅需更改`name`字段,无需修改`kernel`字段。
2. 将网卡配置文件重命名。将`ifcfg-eth0`文件重命名为`ifcfg-em1`,将`ifcfg-eth1`文件重命名为`ifcfg-em2`。
3. 编辑网卡配置文件,如`ifcfg-em1`,将网卡名称修改为正确名称,并删除UUID(如果没有则无需操作)。
4. 重启服务器。重启后,网卡名称将更新,网络服务应正常运行。
要获取Linux网卡信息,可执行以下步骤:
1. 启动Linux操作系统并登录到桌面。
2. 打开终端。
3. 在终端中输入命令`ifconfig eth0`并回车。
4. 解读网卡信息:
- 查看基本信息:使用`lspci`命令。
- 查看详细信息:使用`lspci -vvv`命令,并查找`Ethernet`字样。
- 查看网卡驱动:使用`lspci -vvv`命令查找网卡设备详细信息,包括驱动。
- 使用`lsmod`命令列出所有加载的驱动,包括网卡驱动。
- 查看模块信息:使用`modinfo`命令,指定模块名称,或使用`ethtool -i`命令指定网络设备名称。
- 查看网络接口队列数:使用`ethtool -S`命令指定网络设备名称。
- 查看网卡驱动源码版本号:解压网卡驱动源码,查看对应`.spec`文件中的版本信息。
若需恢复网卡配置文件,可以使用`netconfig`命令。
初学者需掌握如何在Linux中查看网卡信息。具体步骤如下:
1. 启动Linux操作系统并登录到桌面。
2. 打开终端。
3. 在终端中输入命令`ifconfig eth0`并回车。
信息解读:
1. 第一行显示网卡类型和MAC地址。
2. 第二行显示IPV4地址、广播地址和子网掩码。
3. 第三行显示IPV6地址。
4. 第五行显示接收的数据包总数以及错误、丢失的数据包数。
5. 第六行与第五行对应,显示发送的数据包总数以及错误、丢失的数据包数。
6. 第八行显示接收和发送的字节数。
在Linux中若要重初始化网卡,可删除`/etc/sysconfig/network-scripts/ifcfg-eth0`文件,并重新创建一个新的配置文件。之后,可以使用`setup`命令重新添加网卡配置。