1.redis源码解读(一):事件驱动的源码io模型,为什么,源码是源码什么,怎么做
2.深入理解Linux的源码epoll机制
3.Postgresql学习笔记0: 源码安装、gdb调试与VSCode智能提示设置
4.底层原理epoll源码分析,源码还搞不懂epoll的源码xutils源码看过来
redis源码解读(一):事件驱动的io模型,为什么,源码是源码什么,怎么做
Redis作为一个高性能的源码内存数据库,因其出色的源码读写性能和丰富的数据结构支持,已成为互联网应用不可或缺的源码中间件之一。阅读其源码,源码可以了解其内部针对高性能和分布式做的源码种种设计,包括但不限于reactor模型(单线程处理大量网络连接),源码定时任务的源码实现(面试常问),分布式CAP BASE理论的实际应用,高效的数据结构的实现,其次还能够通过大神的代码学习C语言的编码风格和技巧,让自己的代码更加优雅。
下面进入正题:为什么需要事件驱动的io模型
我们可以简单地将一个服务端程序拆成三部分,接受请求->处理请求->返回结果,其中接收请求和处理请求便是我们常说的网络io。那么网络io如何实现呢,首先我们介绍最基础的io模型,同步阻塞式io,也是很多同学在学校所学的“网络编程”。
使用同步阻塞式io的单线程服务端程序处理请求大致有以下几个步骤
其中3,4步都有可能使线程阻塞(6也会可能阻塞,这里先不讨论)
在第3步,如果没有客户端请求和服务端建立连接,那么服务端线程将会阻塞。如果redis采用这种io模型,那主线程就无法执行一些定时任务,比如过期key的清理,持久化操作,集群操作等。
在第4步,如果客户端已经建立连接但是没有发送数据,服务端线程会阻塞。若说第3步所提到的定时任务还可以通过多开两个线程来实现,那么第4步的阻塞就是硬伤了,如果一个客户端建立了连接但是一直不发送数据,服务端便会崩溃,无法处理其他任何请求。所以同步阻塞式io肯定是不能满足互联网领域高并发的需求的。
下面给出一个阻塞式io的服务端程序示例:
刚才提到,阻塞式io的主要问题是,调用recv接收客户端请求时会导致线程阻塞,无法处理其他客户端请求。那么我们不难想到,既然调用recv会使线程阻塞,那么我们多开几个几个线程不就好了,让那些没有阻塞的线程去处理其他客户端的请求。
我们将阻塞式io处理请求的步骤改造下:
改造后,我们用一个线程去做accept,也就是获取已经建立的连接,我们称这个线程为主线程。然后获取到的每个连接开一个新的线程去处理,这样就能够将阻塞的部分放到新的线程,达到不阻塞主线程的目的,主线程仍然可以继续接收其他客户端的连接并开新的线程去处理。这个方案对高并发服务器来说是一个可行的方案,此外我们还可以使用线程池等手段来继续优化,减少线程建立和销毁的开销。
将阻塞式io改为多线程io:
我们刚才提到多线程可以解决并发问题,然而redis6.0之前使用的是单线程来处理,之所以用单线程,官方给的答复是redis的瓶颈不在cpu,既然不在cpu那么用单线程可以降低系统的delphi组态软件源码复杂度,避免线程同步等问题。如何在一个线程中非阻塞地处理多个socket,进而实现多个客户端的并发处理呢,那就要借助io多路复用了。
io多路复用是操作系统提供的另一种io机制,这种机制可以实现在一个线程中监控多个socket,返回可读或可写的socket,当一个socket可读或可写时再去操作它,这样就避免了对某个socket的阻塞等待。
将多线程io改为io多路复用:
什么是事件驱动的io模型(Reactor)
这里只讨论redis用到的单线程Reactor模型
事件驱动的io模型并不是一个具体的调用,而是高并发服务器的一种抽象的编程模式。
在Reactor模型中,有三种事件:
与这三种事件对应的,有三种handler,负责处理对应的事件。我们在一个主循环中不断判断是否有事件到来(一般通过io多路复用获取事件),有事件到来就调用对应的handler去处理时间。
听着玄乎,实际上也就这一张图:
事件驱动的io模型在redis中的实现
以下提及的源码版本为 5.0.8
文字的苍白的,建议参照本文最后的方法下载代码,自己调试下
整体框架
redis-server的main方法在 src/server.c 最后,在main方法中,首先进行一系列的初始化操作,最后进入进入Reactor模型的主循环中:
主循环在aeMain函数中,aeMain函数传入的参数 server.el ,是一个 aeEventLoop 类型的全局变量,保存了主循环的一些状态信息,包括需要处理的读写事件、时间事件列表,epoll相关信息,回调函数等。
aeMain函数中,我们可以看到当 eventLoop->stop 标志位为0时,while循环中的内容会被重复执行,每次循环首先会调用beforesleep回调函数,然后处理时间。beforesleep函数在main函数中被注册,会进行集群状态更新、AOF落盘等任务。
之所以叫beforesleep,是因为aeProcessEvents函数中包含了获取事件和处理事件的逻辑,其中获取读写事件时通过epoll_wait实现,会将线程阻塞。
在aeProcessEvents函数中,处理读写事件和时间事件,参数flags定义了需要处理的事件类型,我们可以暂时忽略这个参数,认为读写时间都需要处理。
aeProcessEvents函数的逻辑可以分为三个部分,首先获取距离最近的时间事件,这一步的目的是为了确定epoll_wait的超时时间,并不是实际处理时间事件。
第二个部分为获取读写事件并处理,首先调用epoll_wait,获取需要处理的读写事件,超时时间为第一步确定的时间,也就是说,如果在超时时间内有读写事件到来,那么处理读写时间,如果没有读写时间就阻塞到下一个时间事件到来,去处理时间事件。
第三个部分为处理时间事件。
事件注册与获取
上面我们讲了整体框架,了解了主循环的大致流程。接下来我们来看其中的细节,首先是读写事件的注册与获取。
redis将读、获取网站动态源码写、连接事件用结构aeFileEvent表示,因为这些事件都是通过epoll_wait获取的。
事件的具体类型通过mask标志位来区分。aeFileEvent还保存了事件处理的回调函数指针(rfileProc、wfileProc)和需要读写的数据指针(clientData)。
既然读写事件是通过epoll io多路复用实现,那么就避不开epoll的三部曲 epoll_create epoll_ctrl epoll_wait,接下来我们看下redis对epoll接口的封装。
我们之前提到aeMain函数的参数是一个 aeEventLoop 类型的全局变量,aeEventLoop中保存了epoll文件描述符和epoll事件。在aeApiCreate函数(src/ae_epoll.c)中,会调用epoll_create来创建初始化epoll文件描述符和epoll事件,调用关系为 main -> initServer -> aeCreateEventLoop -> aeApiCreate
调用epoll_create创建epoll后,就可以添加需要监控的文件描述符了,需要监控的情形有三个,一是监控新的客户端连接连接请求,二是监控客户端发送指令,也就是读事件,三是监控客户端写事件,也就是处理完了请求写回结果。
这三种情形在redis中被抽象为文件事件,文件事件通过函数aeCreateFileEvent(src/ae.c)添加,添加一个文件事件主要包含三个步骤,通过epoll_ctl添加监控的文件描述符,指定回调函数和指定读写缓冲区。
最后是通过epoll_wait来获取事件,上文我们提到,在每次主循环中,首先根据最近到达的时间事件来计算epoll_wait的超时时间,然后调用epoll_wait获取事件,再处理事件,其中获取事件在函数aeApiPoll(src/ae_epoll.c)中。
获取到事件后,主循环中会逐个调用事件的回调函数来处理事件。
读写事件的实现
写累了,有空补上……
如何使用vscode调试redis源码
编译出二进制程序
这一步有可能报错:
jemalloc是内存分配的一种更高效的实现,用于代替libc的默认实现。这里报错找不到jemalloc,我们只需要将其替换成libc默认实现就好:
如果报错:
我们可以在src目录找到一个脚本名为mkreleasehdr.sh,其中包含创建release.h的逻辑,将报错信息网上翻可以发现有一行:
看来是这个脚本没有执行权限,导致release.h没有成功创建,我们需要给这个脚本添加执行权限然后重新编译:
2. 创建调试配置(vscode)
创建文件 .vscode/launch.json,并填入以下内容:
然后就可以进入调试页面打断点调试了,main函数在 src/server.c
深入理解Linux的epoll机制
在Linux系统之中有一个核心武器:epoll池,在高并发的,高吞吐的IO系统中常常见到epoll的身影。IO多路复用在Go里最核心的是Goroutine,也就是所谓的协程,协程最妙的一个实现就是异步的代码长的跟同步代码一样。比如在Go中,网络IO的read,write看似都是同步代码,其实底下都是异步调用,一般流程是:
write(/*IO参数*/)请求入队等待完成后台loop程序发送网络请求唤醒业务方Go配合协程在网络IO上实现了异步流程的同步代码化。核心就是用epoll池来管理网络fd。
实现形式上,后台的程序只需要1个就可以负责管理多个fd句柄,负责应对所有的业务方的IO请求。这种一对多的IO模式我们就叫做IO多路复用。
多路是指?多个业务方(句柄)并发下来的IO。
复用是指?复用这一个后台处理程序。
站在IO系统设计人员的角度,业务方咱们没办法提要求,因为业务是上帝,只有你服从的vr全景.net源码份,他们要创建多个fd,那么你就需要负责这些fd的处理,并且最好还要并发起来。
业务方没法提要求,那么只能要求后台loop程序了!
要求什么呢?快!快!快!这就是最核心的要求,处理一定要快,要给每一个fd通道最快的感受,要让每一个fd觉得,你只在给他一个人跑腿。
那有人又问了,那我一个IO请求(比如write)对应一个线程来处理,这样所有的IO不都并发了吗?是可以,但是有瓶颈,线程数一旦多了,性能是反倒会差的。
这里不再对比多线程和IO多路复用实现高并发之间的区别,详细的可以去了解下nginx和redis高并发的秘密。
最朴实的实现方式?我不用任何其他系统调用,能否实现IO多路复用?
可以的。那么写个for循环,每次都尝试IO一下,读/写到了就处理,读/写不到就sleep下。这样我们不就实现了1对多的IO多路复用嘛。
whileTrue:foreach句柄数组{ read/write(fd,/*参数*/)}sleep(1s)慢着,有个问题,上面的程序可能会被卡死在第三行,使得整个系统不得运行,为什么?
默认情况下,我们没有加任何参数create出的句柄是阻塞类型的。我们读数据的时候,如果数据还没准备好,是会需要等待的,当我们写数据的时候,如果还没准备好,默认也会卡住等待。所以,在上面伪代码第三行是可能被直接卡死,而导致整个线程都得到不到运行。
举个例子,现在有,,这3个句柄,现在读写都没有准备好,只要read/write(,/*参数*/)就会被卡住,但,这两个句柄都准备好了,那遍历句柄数组,,的时候就会卡死在前面,后面,则得不到运行。这不符合我们的预期,因为我们IO多路复用的loop线程是公共服务,不能因为一个fd就直接瘫痪。
那这个问题怎么解决?
只需要把fd都设置成非阻塞模式。这样read/write的时候,如果数据没准备好,返回EAGIN的错误即可,不会卡住线程,从而整个系统就运转起来了。比如上面句柄还未就绪,那么read/write(,手机云测试源码/*参数*/)不会阻塞,只会报个EAGIN的错误,这种错误需要特殊处理,然后loop线程可以继续执行,的读写。
以上就是最朴实的IO多路复用的实现了。但是好像在生产环境没见过这种IO多路复用的实现?为什么?
因为还不够高级。for循环每次要定期sleep1s,这个会导致吞吐能力极差,因为很可能在刚好要sleep的时候,所有的fd都准备好IO数据,而这个时候却要硬生生的等待1s,可想而知。。。
那有同学又要质疑了,那for循环里面就不sleep嘛,这样不就能及时处理了吗?
及时是及时了,但是CPU估计要跑飞了。不加sleep,那在没有fd需要处理的时候,估计CPU都要跑到%了。这个也是无法接受的。
纠结了,那sleep吞吐不行,不sleep浪费cpu,怎么办?
这种情况用户态很难有所作为,只能求助内核来提供机制协助来。因为内核才能及时的管理这些通知和调度。
我们再梳理下IO多路复用的需求和原理。IO多路复用就是1个线程处理多个fd的模式。我们的要求是:这个“1”就要尽可能的快,避免一切无效工作,要把所有的时间都用在处理句柄的IO上,不能有任何空转,sleep的时间浪费。
有没有一种工具,我们把一箩筐的fd放到里面,只要有一个fd能够读写数据,后台loop线程就要立马唤醒,全部马力跑起来。其他时间要把cpu让出去。
能做到吗?能,这种需求只能内核提供机制满足你。
这事Linux内核必须要给个说法?是的,想要不用sleep这种辣眼睛的实现,Linux内核必须出手了,毕竟IO的处理都是内核之中,数据好没好内核最清楚。
内核一口气提供了3种工具select,poll,epoll。
为什么有3种?
历史不断改进,矬->较矬->卧槽、高效的演变而已。
Linux还有其他方式可以实现IO多路复用吗?
好像没有了!
这3种到底是做啥的?
这3种都能够管理fd的可读可写事件,在所有fd不可读不可写无所事事的时候,可以阻塞线程,切走cpu。fd有情况的时候,都要线程能够要能被唤醒。
而这三种方式以epoll池的效率最高。为什么效率最高?
其实很简单,这里不详说,其实无非就是epoll做的无用功最少,select和poll或多或少都要多余的拷贝,盲猜(遍历才知道)fd,所以效率自然就低了。
举个例子,以select和epoll来对比举例,池子里管理了个句柄,loop线程被唤醒的时候,select都是蒙的,都不知道这个fd里谁IO准备好了。这种情况怎么办?只能遍历这个fd,一个个测试。假如只有一个句柄准备好了,那相当于做了1千多倍的无效功。
epoll则不同,从epoll_wait醒来的时候就能精确的拿到就绪的fd数组,不需要任何测试,拿到的就是要处理的。
epoll池原理下面我们看一下epoll池的使用和原理。
epoll涉及的系统调用epoll的使用非常简单,只有下面3个系统调用。
epoll_createepollctlepollwait就这?是的,就这么简单。
epollcreate负责创建一个池子,一个监控和管理句柄fd的池子;
epollctl负责管理这个池子里的fd增、删、改;
epollwait就是负责打盹的,让出CPU调度,但是只要有“事”,立马会从这里唤醒;
epoll高效的原理Linux下,epoll一直被吹爆,作为高并发IO实现的秘密武器。其中原理其实非常朴实:epoll的实现几乎没有做任何无效功。我们从使用的角度切入来一步步分析下。
首先,epoll的第一步是创建一个池子。这个使用epoll_create来做:
原型:
intepoll_create(intsize);示例:
epollfd=epoll_create();if(epollfd==-1){ perror("epoll_create");exit(EXIT_FAILURE);}这个池子对我们来说是黑盒,这个黑盒是用来装fd的,我们暂不纠结其中细节。我们拿到了一个epollfd,这个epollfd就能唯一代表这个epoll池。
然后,我们就要往这个epoll池里放fd了,这就要用到epoll_ctl了
原型:
intepoll_ctl(intepfd,intop,intfd,structepoll_event*event);示例:
if(epoll_ctl(epollfd,EPOLL_CTL_ADD,,&ev)==-1){ perror("epoll_ctl:listen_sock");exit(EXIT_FAILURE);}上面,我们就把句柄放到这个池子里了,op(EPOLL_CTL_ADD)表明操作是增加、修改、删除,event结构体可以指定监听事件类型,可读、可写。
第一个跟高效相关的问题来了,添加fd进池子也就算了,如果是修改、删除呢?怎么做到时间快?
这里就涉及到你怎么管理fd的数据结构了。
最常见的思路:用list,可以吗?功能上可以,但是性能上拉垮。list的结构来管理元素,时间复杂度都太高O(n),每次要一次次遍历链表才能找到位置。池子越大,性能会越慢。
那有简单高效的数据结构吗?
有,红黑树。Linux内核对于epoll池的内部实现就是用红黑树的结构体来管理这些注册进程来的句柄fd。红黑树是一种平衡二叉树,时间复杂度为O(logn),就算这个池子就算不断的增删改,也能保持非常稳定的查找性能。
现在思考第二个高效的秘密:怎么才能保证数据准备好之后,立马感知呢?
epoll_ctl这里会涉及到一点。秘密就是:回调的设置。在epoll_ctl的内部实现中,除了把句柄结构用红黑树管理,另一个核心步骤就是设置poll回调。
思考来了:poll回调是什么?怎么设置?
先说说file_operations->poll是什么?
在fd篇说过,Linux设计成一切皆是文件的架构,这个不是说说而已,而是随处可见。实现一个文件系统的时候,就要实现这个文件调用,这个结构体用structfile_operations来表示。这个结构体有非常多的函数,我精简了一些,如下:
structfile_operations{ ssize_t(*read)(structfile*,char__user*,size_t,loff_t*);ssize_t(*write)(structfile*,constchar__user*,size_t,loff_t*);__poll_t(*poll)(structfile*,structpoll_table_struct*);int(*open)(structinode*,structfile*);int(*fsync)(structfile*,loff_t,loff_t,intdatasync);//....};你看到了read,write,open,fsync,poll等等,这些都是对文件的定制处理操作,对于文件的操作其实都是在这个框架内实现逻辑而已,比如ext2如果有对read/write做定制化,那么就会是ext2_read,ext2_write,ext4就会是ext4_read,ext4_write。在open具体“文件”的时候会赋值对应文件系统的file_operations给到file结构体。
那我们很容易知道read是文件系统定制fd读的行为调用,write是文件系统定制fd写的行为调用,file_operations->poll呢?
这个是定制监听事件的机制实现。通过poll机制让上层能直接告诉底层,我这个fd一旦读写就绪了,请底层硬件(比如网卡)回调的时候自动把这个fd相关的结构体放到指定队列中,并且唤醒操作系统。
举个例子:网卡收发包其实走的异步流程,操作系统把数据丢到一个指定地点,网卡不断的从这个指定地点掏数据处理。请求响应通过中断回调来处理,中断一般拆分成两部分:硬中断和软中断。poll函数就是把这个软中断回来的路上再加点料,只要读写事件触发的时候,就会立马通知到上层,采用这种事件通知的形式就能把浪费的时间窗就完全消失了。
划重点:这个poll事件回调机制则是epoll池高效最核心原理。
划重点:epoll池管理的句柄只能是支持了file_operations->poll的文件fd。换句话说,如果一个“文件”所在的文件系统没有实现poll接口,那么就用不了epoll机制。
第二个问题:poll怎么设置?
在epoll_ctl下来的实现中,有一步是调用vfs_poll这个里面就会有个判断,如果fd所在的文件系统的file_operations实现了poll,那么就会直接调用,如果没有,那么就会报告响应的错误码。
staticinline__poll_tvfs_poll(structfile*file,structpoll_table_struct*pt){ if(unlikely(!file->f_op->poll))returnDEFAULT_POLLMASK;returnfile->f_op->poll(file,pt);}你肯定好奇poll调用里面究竟是实现了什么?
总结概括来说:挂了个钩子,设置了唤醒的回调路径。epoll跟底层对接的回调函数是:ep_poll_callback,这个函数其实很简单,做两件事情:
把事件就绪的fd对应的结构体放到一个特定的队列(就绪队列,readylist);
唤醒epoll,活来啦!
当fd满足可读可写的时候就会经过层层回调,最终调用到这个回调函数,把对应fd的结构体放入就绪队列中,从而把epoll从epoll_wait出唤醒。
这个对应结构体是什么?
结构体叫做epitem,每个注册到epoll池的fd都会对应一个。
就绪队列很高级吗?
就绪队列就简单了,因为没有查找的需求了呀,只要是在就绪队列中的epitem,都是事件就绪的,必须处理的。所以就绪队列就是一个最简单的双指针链表。
小结下:epoll之所以做到了高效,最关键的两点:
内部管理fd使用了高效的红黑树结构管理,做到了增删改之后性能的优化和平衡;
epoll池添加fd的时候,调用file_operations->poll,把这个fd就绪之后的回调路径安排好。通过事件通知的形式,做到最高效的运行;
epoll池核心的两个数据结构:红黑树和就绪列表。红黑树是为了应对用户的增删改需求,就绪列表是fd事件就绪之后放置的特殊地点,epoll池只需要遍历这个就绪链表,就能给用户返回所有已经就绪的fd数组;
哪些fd可以用epoll来管理?再来思考另外一个问题:由于并不是所有的fd对应的文件系统都实现了poll接口,所以自然并不是所有的fd都可以放进epoll池,那么有哪些文件系统的file_operations实现了poll接口?
首先说,类似ext2,ext4,xfs这种常规的文件系统是没有实现的,换句话说,这些你最常见的、真的是文件的文件系统反倒是用不了epoll机制的。
那谁支持呢?
最常见的就是网络套接字:socket。网络也是epoll池最常见的应用地点。Linux下万物皆文件,socket实现了一套socket_file_operations的逻辑(net/socket.c):
staticconststructfile_operationssocket_file_ops={ .read_iter=sock_read_iter,.write_iter=sock_write_iter,.poll=sock_poll,//...};我们看到socket实现了poll调用,所以socketfd是天然可以放到epoll池管理的。
还有吗?
有的,其实Linux下还有两个很典型的fd,常常也会放到epoll池里。
eventfd:eventfd实现非常简单,故名思义就是专门用来做事件通知用的。使用系统调用eventfd创建,这种文件fd无法传输数据,只用来传输事件,常常用于生产消费者模式的事件实现;
timerfd:这是一种定时器fd,使用timerfd_create创建,到时间点触发可读事件;
小结一下:
ext2,ext4,xfs等这种真正的文件系统的fd,无法使用epoll管理;
socketfd,eventfd,timerfd这些实现了poll调用的可以放到epoll池进行管理;
其实,在Linux的模块划分中,eventfd,timerfd,epoll池都是文件系统的一种模块实现。
思考前面我们已经思考了很多知识点,有一些简单有趣的知识点,提示给读者朋友,这里只抛砖引玉。
问题:单核CPU能实现并行吗?
不行。
问题:单线程能实现高并发吗?
可以。
问题:那并发和并行的区别是?
一个看的是时间段内的执行情况,一个看的是时间时刻的执行情况。
问题:单线程如何做到高并发?
IO多路复用呗,今天讲的epoll池就是了。
问题:单线程实现并发的有开源的例子吗?
redis,nginx都是非常好的学习例子。当然还有我们Golang的runtime实现也尽显高并发的设计思想。
总结IO多路复用的原始实现很简单,就是一个1对多的服务模式,一个loop对应处理多个fd;
IO多路复用想要做到真正的高效,必须要内核机制提供。因为IO的处理和完成是在内核,如果内核不帮忙,用户态的程序根本无法精确的抓到处理时机;
fd记得要设置成非阻塞的哦,切记;
epoll池通过高效的内部管理结构,并且结合操作系统提供的poll事件注册机制,实现了高效的fd事件管理,为高并发的IO处理提供了前提条件;
epoll全名eventpoll,在Linux内核下以一个文件系统模块的形式实现,所以有人常说epoll其实本身就是文件系统也是对的;
socketfd,eventfd,timerfd这三种”文件“fd实现了poll接口,所以网络fd,事件fd,定时器fd都可以使用epoll_ctl注册到池子里。我们最常见的就是网络fd的多路复用;
ext2,ext4,xfs这种真正意义的文件系统反倒没有提供poll接口实现,所以不能用epoll池来管理其句柄。那文件就无法使用epoll机制了吗?不是的,有一个库叫做libaio,通过这个库我们可以间接的让文件使用epoll通知事件,以后详说,此处不表;
后记epoll池使用很简洁,但实现不简单。还是那句话,Linux内核帮你包圆了。
今天并没有罗列源码实现,以很小的思考点为题展开,简单讲了一些epoll的思考,以后有机会可以分享下异步IO(aio)和epoll能产生什么火花?Golang是怎样使用epoll池的?敬请期待哦。
原创不易,更多干货,关注:奇伢云存储
Postgresql学习笔记0: 源码安装、gdb调试与VSCode智能提示设置
本文详细介绍如何使用源码安装PostgreSQL并进行gdb调试,以及如何在VSCode中设置智能提示。
首先,安装依赖、克隆仓库并指定编译安装目录。在configure中,开启额外选项以支持gdb调试。
配置环境变量,将安装目录的四个文件夹添加到环境中。初始化数据库,新建数据库目录并完成初始化。
启动数据库,通过psql连接数据库并查看登录信息。初始化后,自动创建名为postgres的数据库和安装时的用户。
启用gdb调试,进入pg_ctl所在的目录,执行特定命令,若成功将显示调试信息。单步调试pg_ctl,发现主程序启动位置。
注意,主程序启动由exec执行sh后启动,但可通过获取pid后attach的方式进行调试。使用pg_ctl启动后,发现有多个进程,包括响应客户端请求的后端进程。
使用gdb调试指定进程,结果显示进程在系统调用epoll_wait中,此时没有源码调试文件。使用backtrace追踪调用栈信息,可以观察到后端进程等待客户端网络活动的正常运行状态。
继续调试SocketBackend,接受客户端链接,可在此处设置断点。使用ctrl c暂停进程,然后在psql连接客户端一侧使用\l命令,后端进程继续执行,成功进入PostgreSQL业务代码,并附带源码调试信息。
VSCode智能提示设置中,发现直接打开项目文件夹时,代码提示和补全功能受限。通过查阅得知,智能跳转通常需要一个编译数据库(compile_commands.json)。这个文件包含编译器在编译项目时使用的命令,允许代码分析工具理解代码编译过程,提供准确的智能感知。
使用bear拦截编译命令,安装bear并使用Ubuntu的apt进行安装。通过特定命令捕获编译命令,生成compile_commands.json文件。注意,在执行make命令前,需先执行make clean以清除之前的编译结果,确保bear能正确捕获编译命令。
设置VSCode时,导入生成的compile_commands.json文件,之后重启VSCode,发现C文件已具备智能提示和跳转功能。
参考资料包括postgresql.org官方文档、知乎专栏以及CSDN博客文章,本文在Zhihu平台上使用VSCode完成创作并发布。
底层原理epoll源码分析,还搞不懂epoll的看过来
Linux内核提供关键epoll操作通过四个核心函数:epoll_create()、epoll_ctl()、epoll_wait()和epoll_event_callback()。操作系统内部使用epoll_event_callback()来调度epoll对象中的事件,此函数对理解epoll如何支持高并发连接至关重要。简化版TCP/IP协议栈在GitHub上实现epoll逻辑,存放关键函数的文件是[src ty_epoll_rb.c]。
epoll的实现包含两个核心数据结构:epitem和eventpoll。epitem由rbn和rdlink组成,前者为红黑树节点,后者为双链表节点,实现事件对象的红黑树与双链表两重管理。eventpoll包含rbr和rdlist,分别指向红黑树根和双链表头,管理所有epitem对象。
深入分析四个关键函数:
epoll_create():创建epoll对象,逻辑概括为六步。
epoll_ctl():根据用户传入参数构建epitem对象,依据操作类型(ADD、MOD、DEL)决定epitem在红黑树中的插入、更新或删除。
epoll_wait():检查双链表中是否有节点,若有填充用户指定内存,无则循环等待事件触发,调用epoll_event_callback()插入新节点。
epoll_event_callback():内核中被调用,用于处理服务器触发的五种特定情况,并将红黑树节点插入双链表。
总结epoll底层实现,关键在于两个数据结构,分别管理事件与对象关系。epoll通过红黑树与双链表高效组织事件,确保高并发场景下的高效处理。