【主板 源码】【gvcp協議源码】【滴水算法源码python】handler 实例源码_handler源码分析

2024-12-23 05:17:52 来源:源码包上传 分类:百科

1.Pistache源码分析 —— Transport类
2.Handler 执行流程及源码解析
3.源码解析,例源Glide加载GIF图的源码原理竟然这么简单
4.Handler知识详解与源码分析
5.Tomcat处理http请求之源码分析 | 京东云技术团队

handler 实例源码_handler源码分析

Pistache源码分析 —— Transport类

       Transport类是Reactor架构中的关键组件,它为worker线程提供了一系列接口,分析负责处理核心功能,例源如等待HTTP请求并调用用户自定义的源码Handler。简单来说,分析主板 源码如果Handler对应HTTP协议,例源那么Transport相当于TCP协议,源码这是分析其名称的由来。

       Transport类继承自Aio::Handler类,例源该基类定义了两个虚函数。源码Transport类内部还包含了一系列成员变量和成员函数,分析共同构成其功能。例源

       成员变量包括:PollableQueue、源码处理新连接、分析处理HTTP请求、异步写机制、线程资源统计、定时机制和断开连接等。

       Aio::Handler类主要定义了两个虚函数,具体功能与Transport类的成员函数相对应,如处理新连接、处理HTTP请求、gvcp協議源码异步写机制等。

       处理新连接:这部分功能在初始化和请求处理阶段实现,具体操作可参考源码分析文章。

       处理HTTP请求:处理请求是核心功能,文章中详细描述了这一过程,包括请求处理的具体实现。

       异步写机制:这部分功能通过rusage和timerfd机制实现,可参考相关Linux手册了解具体实现。

       线程资源统计:这部分功能用于统计线程资源,确保程序高效运行。

       定时机制:通过timerfd_create(2)和getrusage(2)实现定时任务,这部分功能需要深入理解Linux相关手册。

       断开连接:提供了断开连接的功能,确保连接资源的合理管理。

       重载父类:实现父类的重载,扩展或修改基类的功能。

       其他:Transport类还包含了其他功能,这些功能可能涉及数据处理、状态管理等,具体细节需查阅源代码。

Handler 执行流程及源码解析

       本文深入解析了Handler的执行流程及源码,围绕Looper、滴水算法源码pythonMessageQueue、Message、Handler之间的协作运行机制,详细介绍了从sendMessage到handlerMessage的代码执行流程。

       在UI线程中,Looper是自动创建的,通过调用Looper.prepareMainLooper()方法,此方法内部调用了Looper的prepare()方法来创建Looper对象,并将其存储在ThreadLocal中,实现线程内部的数据存储。对于子线程,则需手动创建Looper,方法与UI线程一致,同样通过Looper.prepare()完成。

       Handler在初始化时,通过ThreadLocal获取当前线程的Looper与MessageQueue。发送消息时,有三种方式:sendMessage、obtainMessage与post(runable),它们实质上操作相同,差异仅在于对Message的处理。最终,evrc-b源码所有消息都会通过sendMessage方法调用到MessageQueue的enqueueMessage实现。

       MessageQueue内部使用单链表维护消息列表,主要包含enqueueMessage与next两个操作:enqueueMessage实现数据插入,next通过死循环检查并删除链表中的消息。当MessageQueue中出现新消息时,Looper会立即检测到并处理。

       Looper的loop()方法内有一个死循环,通过messageQueue.next()检查消息队列,获取并删除新消息。检测到新消息后,调用msg.target.dispatchMessage(msg)处理消息,此方法在Looper内执行,切换到Handler创建时的线程,由Handler发送的消息最终回到Handler内部,执行dispatchMessage(msg)方法。

       Handler处理消息分为三种情况:执行run()方法,实现线程切换;使用Callback接口的实例作为mCallback,用于不使用Handler派生类的情况;重写handlerMessage(msg)方法处理具体业务。至此,从sendMessage到handlerMessage的整个流程得以清晰展现。

       整体流程总结如下:

       1. 在Handler初始化时,获取线程的物流发货源码Looper与MessageQueue;

       2. sendMessage方法最终调用enqueueMessage插入Message到队列,并将Handler赋值给Message对象的target属性;

       3. MessageQueue在插入Message后,Looper检测到新消息,并开始处理;

       4. Looper的loop方法通过traget属性获取到Handler对象,执行dispatchMessage方法;

       5. 最终调用继承自Handler的handlerMessage方法处理具体业务。

源码解析,Glide加载GIF图的原理竟然这么简单

       在探讨之前,让我们明确一点:Android的ImageView实际上并不支持直接加载GIF动图,因为ImageView基于Canvas绘制,而Canvas仅支持drawBitmap一次绘制一张。那么,Glide是如何巧妙地让ImageView展现出GIF动画的呢?

       让我们从Glide的源码入手,今天的主角是GifDrawable。这个类虽然有大约行代码,但理解其工作原理并非无迹可寻。首先,我们注意到一个开始播放第一帧的方法,这可能是入口点。

       代码结构中,当GIF有多帧时,会订阅特定事件。关键在于观察三句代码:一是递增帧位置,表明采用无限轮播算法;二是加载资源回调,通过Target接口来触发;三是消息传递,用Handler进行控制。

       在加载资源的回调中,我们看到消息机制在发挥作用。当接收到消息,会根据what参数进行处理。在handleMessage中,处理了延迟消息和清理消息。延迟消息会获取新帧数据并绘制到ImageView,同时清除旧帧,接着进入下一个帧的加载和清除过程。

       总结来说,Glide加载GIF的原理相当直观:GIF被解析为一系列,通过无限轮播,每次新帧的加载都触发一次请求。在完成绘制后,旧帧会被清除,然后继续下一轮的加载。整个过程通过Handler的消息传递机制驱动循环播放。以上内容摘自Android轮子哥的分享。

Handler知识详解与源码分析

       Handler是Android中的核心组件,它负责在不同线程间传递消息。其工作原理是通过内存共享,允许子线程(生产者)向主线程(消费者)发送消息,以及主线程向子线程发送指令。这种机制有助于线程间协作,如网络请求完成后更新UI等场景。

       Message是消息的实体,承载着数据和执行指令。MessageQueue是一个优先级队列,负责存储和调度消息。Handler则是个消息处理类,负责发送、获取和处理消息,以及管理消息队列。Looper的存在是为了从MessageQueue中轮询消息,执行相应操作。

       创建Handler有多种方式,包括主线程的匿名内部类和静态内部类,以及子线程中的Looper.prepare()和Looper.loop()。发送消息的方法丰富多样,如sendMessage()、sendMessageDelayed()等,可以控制消息的执行时间和顺序。处理消息时,Handler与MessageQueue、Looper的交互是关键,保证了消息处理的线程安全。

       在源码分析中,我们发现Looper的创建和使用与APP启动流程紧密相关,确保每个线程只有一个Looper,避免内存泄漏。MessageQueue的线程同步和消息屏障机制确保了消息的有序处理。此外,如何处理内存管理、线程同步问题以及Looper的退出策略也是处理Handler时需要注意的要点。

       最后,对于Handler的使用,如创建、消息发送和处理,以及可能遇到的问题,如内存泄漏、线程同步等,都有详细的解析和解决方案。理解这些概念有助于开发人员更有效地利用Handler进行线程间的通信。

Tomcat处理http请求之源码分析 | 京东云技术团队

       本文将从请求获取与包装处理、请求传递给 Container、Container 处理请求流程,这 3 部分来讲述一次 http 穿梭之旅。

       在 tomcat 组件 Connector 启动时,会监听端口。以 JIoEndpoint 为例,在 Acceptor 类中,socket = serverSocketFactory.acceptSocket (serverSocket); 与客户端建立连接,将连接的 socket 交给 processSocket (socket) 来处理。在 processSocket 中,对 socket 进行包装,交给线程池处理。

       线程池中的 SocketProcessor 任务,将 socket 交给 handler 处理,此 handler 为 HttpConnectionHandler 的实例。在 HttpConnectionHandler 的父类 process 方法中,根据请求的状态,创建 HttpProcessor 进行相应的处理,然后切到 HttpProcessor 的父类 AbstractHttpProccessor 中。

       在 SocketProcessor 中,从 socket 获取请求数据,进行 keep-alive 处理,数据包装等操作,最终将处理后的请求信息交给了 CoyoteAdapter 的 service 方法。

       CoyoteAdapter 的 service 方法中有两个主要任务:一是将 org.apache.coyote.Request 和 org.apache.coyote.Response 转换为继承自 HttpServletRequest 的 org.apache.catalina.connector.Request 和 org.apache.catalina.connector.Response,同时定位到 Context 和 Wrapper。二是将请求交给 StandardEngineValve 处理。

       在 postParseRequest 方法中,request 通过 URI 的信息找到属于自己的 Context 和 Wrapper。Mapper 保存了所有的容器信息,初始化时将所有容器添加到了 mapper 中。容器信息的变化由 MapperListener 监听,一旦容器发生变化,MapperListener 将其作为监听者进行处理。

       找到请求对应的 Context 和 Wrapper 后,CoyoteAdapter 将包装好的请求交给 Container 处理。从下面的代码片段,我们很容易追踪整个 Container 的调用链,形成时间线图。

       最终,StandardWrapperValve 将请求交给 Servlet 处理完成,至此一次 http 请求处理完毕。

本文地址:http://50.net.cn/html/42b687193086.html 欢迎转发