1.redis 码数Դ????
2.Redis 哨兵模式 - 源码梳理
3.Redis 主从复制 - 源码梳理
4.Redis 实现分布式锁 +Redisson 源码解析
5.Redis 源码剖析 3 -- redisCommand
6.Redis radix tree 源码解析
redis Դ????
本文将深入探讨如何利用 Redis 实现游戏中的实时排行榜,并提供实现细节和源码。码数
首先,码数我们以一个坦克手游为例。码数游戏中每个角色可拥有多种类型的码数坦克,玩家可以加入军团(公会)。码数进销存网页版源码免费这个系统需要实现两种主要的码数排行榜:等级排行榜和通天塔排行榜。
等级排行榜的码数实现思路是将等级和战斗力合并为一个复合积分。我们可以设定一个公式:分数 = 等级* + 战力。码数因为玩家等级范围从1到,码数战斗力范围从0到,码数所以我们设计时考虑到,码数等级需要3位数,码数战斗力需要位数,码数合计需要位数的码数积分,而Redis的有序集合(SortedSet)的score取值范围是位整数或双精度浮点数,足以容纳这个需求。
对于通天塔排行榜,我们采用类似但略有不同的策略。要求相同层数下,通关时间越早越排在前。我们可以将通关时间转换为相对于一个较远时间点(如--)的相对时间,计算公式为:分数 = 层数 * ^N + (基准时间 - 通关时间)。这里我们选择一个远到足以避免现实时间影响的时间戳,从而确保排名的公正性。
为了实现实时更新排行榜数据,我们采用一个策略:使用 Redis 的有序集合存储玩家的复合积分(如角色uid和坦克id),而使用哈希存储动态数据(如玩家的其他相关信息)。当玩家等级或战斗力发生改变时,实时更新有序集合中的积分值即可。对于其他可能变化的数据,也相应地更新哈希表中的数据。
在取排行榜时,以等级排行榜为例,我们可以使用 Redis 的命令来获取数据。具体的access源码作品代码实现通常涉及多步骤操作,例如准备数据、排序、分批取数据等。优化点在于合理使用 Redis 的 Pipeline 和 Multi 模式,以提高性能和效率。
最终,排行榜的实现并不止于此,我们需要考虑的细节还包括对排行榜数据的展示、排序算法的优化等。这里提供了一个基本框架和实现思路,具体的代码和详细步骤需要根据实际项目需求和环境进行调整。
通过以上内容,我们已经对如何利用 Redis 来搭建游戏排行榜系统有了深入的理解。通过合理的数据结构设计和 Redis 命令的运用,可以实现高效、实时且易于维护的排行榜功能。
Redis 哨兵模式 - 源码梳理
本文以Redis 7.0.版本为基准,如有不妥之处,敬请指正。
哨兵模式的代码流程逻辑如下:哨兵节点每秒(主从切换时为1秒)向已知的主节点和从节点发送info命令。接收到主节点的info回复后,解析其中的slave字段信息,进而创建相应的从节点instance。收到从节点的info回复后,解析其中的slave_master_host、slave_master_port、slave_master_link_status、slave_priority、slave_repl_offset、replica_announced等信息(步骤2和sentinelInfoReplyCallback)。
在sentinel.masters的初始数据中,来自于sentinel.conf中的monitor,利用info命令探测主节点及其所属的从节点。通过订阅__sentinel__:hello频道,获取其他哨兵节点的linux自带源码信息。其中,link->act_ping_time表示最早一次未收到回复的ping请求发送时间,收到回复后其会被重置为0。因此,其不为0时,表示有未收到回复的ping请求。link->last_avail_time表示最近一次收到对ping有效回复的时间,link->last_pong_time表示最近一次收到对ping回复(有效和无效)的时间,link->pc_last_activity表示最近一次收到publish的消息,ri->role_reported_time表示最近一次收到info且回复中role相比于上次发生改变的时间。
Raft一致性算法
thesecretlivesofdata.com...
Redis 主从复制 - 源码梳理
本文主要剖析Redis主从复制机制中的核心组件之一——复制积压缓冲区(Replication Buffer),旨在为读者提供一个对Redis复制流程和缓冲区机制深入理解的平台,以下内容仅基于Redis版本7.0.,若读者在使用过程中发现偏差,欢迎指正。
复制积压缓冲区在逻辑上可理解为一个容量最大的位整数,其初始值为1,由offset、master_repl_offset和repl_backlog-histlen三个变量共同决定缓冲区的有效范围。offset表示缓冲区内命令起始位置,master_repl_offset代表结束位置,二者之间的长度由repl_backlog-histlen表示。
每当主节点执行写命令,新生成的积压缓冲区大小增加,同时增加master_repl_offset和repl_backlog-histlen的值,直至达到预设的最大容量(默认为1MB)。一旦所有从节点接收到命令并确认同步无误,缓冲区内过期的命令将被移除,并调整offset和histlen以维持积压区容量的稳定性。
为实现动态分配,复制积压缓冲区被分解成多个block,以链表形式组织。每个block采用引用计数管理策略,初始值为0,每当增加或删除从节点对block的战神蚩尤源码引用时,计数值相应增减。新生成block时,将master_repl_offset+1设置为block的repl_offset值,并将写入命令拷贝至缓冲区内,与此同时,master_repl_offset和repl_backlog-histlen增加。
通过循环遍历所有从节点,为每个从节点设置ref_repl_buf_node指向当前block或最后一个block,确保主从复制能够准确传递命令。当主节点接收到从节点的连接请求时,将开始填充积压缓冲区。在全量复制阶段,从slave-replstate为WAIT_BGSAVE_START至ONLINE,表示redis从后台进程开始执行到完成RDB文件传输和加载,命令传播至此阶段正式开始。
针对每个从节点,主节点从slave-ref_block_pos开始发送积压缓冲区内的命令,每发送成功,slave-ref_block_pos相应更新。当积压缓冲区超过预设阈值,即复制积压缓冲区中的有效长度超过repl-backlog-size(默认1MB)时,主节点将清除已发送的缓冲区,释放内存。如果主节点写入命令频繁或从节点断线重连时间长,则需合理调整缓冲区大小(推荐值为2 * second * write_size_per_second)以保持增量复制的稳定运行。
当最后一个从节点与主节点的连接断开超过repl-backlog-ttl(默认为秒)时,主节点将释放repl_backlog和复制积压缓冲区以确保资源的有效使用。不过需要注意的是,从节点的释放操作依赖于节点是否可能成为新的主节点,因此在最后处理逻辑上需保持谨慎。
Redis 实现分布式锁 +Redisson 源码解析
在一些场景中,多个进程需要以互斥的方式独占共享资源,这时分布式锁成为了一个非常有用的工具。
随着互联网技术的快速发展,数据规模在不断扩大,bilstm源码详解分布式系统变得越来越普遍。一个应用往往会部署在多台机器上(多节点),在某些情况下,为了保证数据不重复,同一任务在同一时刻只能在一个节点上运行,即确保某一方法在同一时刻只能被一个线程执行。在单机环境中,应用是在同一进程下的,仅需通过Java提供的 volatile、ReentrantLock、synchronized 及 concurrent 并发包下的线程安全类等来保证线程安全性。而在多机部署环境中,不同机器不同进程,需要在多进程下保证线程的安全性,因此分布式锁应运而生。
实现分布式锁的三种主要方式包括:zookeeper、Redis和Redisson。这三种方式都可以实现分布式锁,但基于Redis实现的性能通常会更好,具体选择取决于业务需求。
本文主要探讨基于Redis实现分布式锁的方案,以及分析对比Redisson的RedissonLock、RedissonRedLock源码。
为了确保分布式锁的可用性,实现至少需要满足以下四个条件:互斥性、过期自动解锁、请求标识和正确解锁。实现方式通过Redis的set命令加上nx、px参数实现加锁,以及使用Lua脚本进行解锁。实现代码包括加锁和解锁流程,核心实现命令和Lua脚本。这种实现方式的主要优点是能够确保互斥性和自动解锁,但存在单点风险,即如果Redis存储锁对应key的节点挂掉,可能会导致锁丢失,导致多个客户端持有锁的情况。
Redisson提供了一种更高级的实现方式,实现了分布式可重入锁,包括RedLock算法。Redisson不仅支持单点模式、主从模式、哨兵模式和集群模式,还提供了一系列分布式的Java常用对象和锁实现,如可重入锁、公平锁、联锁、读写锁等。Redisson的使用方法简单,旨在分离对Redis的关注,让开发者更专注于业务逻辑。
通过Redisson实现分布式锁,相比于纯Redis实现,有更完善的特性,如可重入锁、失败重试、最大等待时间设置等。同时,RedissonLock同样面临节点挂掉时可能丢失锁的风险。为了解决这个问题,Redisson提供了实现了RedLock算法的RedissonRedLock,能够真正解决单点故障的问题,但需要额外为RedissonRedLock搭建Redis环境。
如果业务场景可以容忍这种小概率的错误,推荐使用RedissonLock。如果无法容忍,推荐使用RedissonRedLock。此外,RedLock算法假设存在N个独立的Redis master节点,并确保在N个实例上获取和释放锁,以提高分布式系统中的可靠性。
在实现分布式锁时,还需要注意到实现RedLock算法所需的Redission节点的搭建,这些节点既可以是单机模式、主从模式、哨兵模式或集群模式,以确保在任一节点挂掉时仍能保持分布式锁的可用性。
在使用Redisson实现分布式锁时,通过RedissonMultiLock尝试获取和释放锁的核心代码,为实现RedLock算法提供了支持。
Redis 源码剖析 3 -- redisCommand
Redis 使用 redisCommand 结构体处理命令请求,其内包含一个指向对应处理函数的 proc 指针。redisCommandTable 是一个存储所有 Redis 命令的数组,位于 server.c 文件中。此数组通过 populateCommandTable() 函数填充,该函数将 redisCommandTable 的内容添加到 server.commands 字典,将 Redis 支持的所有命令及其实现整合。
populateCommandTable() 函数中包含 populateCommandTableParseFlags() 子函数,用于将 sflags 字符串转换为对应的 flags 值。lookupCommand*() 函数族负责从 server.commands 中查找相应的命令。
Redis radix tree 源码解析
Redis 实现了不定长压缩前缀的 radix tree,用于集群模式下存储 slot 对应的所有 key 信息。本文解析在 Redis 中实现 radix tree 的核心内容。
核心数据结构的定义如下:
每个节点结构体 (raxNode) 包含了指向子节点的指针、当前节点的 key 的长度、以及是否为叶子节点的标记。
以下是插入流程示例:
场景一:仅插入 "abcd"。此节点为叶子节点,使用压缩前缀。
场景二:在 "abcd" 之后插入 "abcdef"。从 "abcd" 的父节点遍历至压缩前缀,找到 "abcd" 空子节点,插入 "ef" 并标记为叶子节点。
场景三:在 "abcd" 之后插入 "ab"。ab 为 "abcd" 的前缀,插入 "ab" 为子节点,并标记为叶子节点。同时保留 "abcd" 的前缀结构。
场景四:在 "abcd" 之后插入 "abABC"。ab 为前缀,创建 "ab" 和 "ABC" 分别为子节点,保持压缩前缀结构。
删除流程则相对简单,找到指定 key 的叶子节点后,向上遍历并删除非叶子节点。若删除后父节点非压缩且大小大于1,则需处理合并问题,以优化树的高度。
合并的条件涉及:删除节点后,检查父节点是否仍为非压缩节点且包含多个子节点,以此决定是否进行合并操作。
结束语:云数据库 Redis 版提供了稳定可靠、性能卓越、可弹性伸缩的数据库服务,基于飞天分布式系统和全SSD盘高性能存储,支持主备版和集群版高可用架构。提供全面的容灾切换、故障迁移、在线扩容、性能优化的数据库解决方案,欢迎使用。
Redis 源码分析字典(dict)
Redis 的内部字典世界:从哈希表到高效管理的深度解析
Redis,作为开源的高性能键值存储系统,其内部实现的字典数据结构是其核心组件之一。这个数据结构采用自定义的哈希表——dictEntry,巧妙地存储和管理着键值对。让我们一起深入理解这一强大工具的运作机制。
首先,Redis的字典是基于哈希表的,通过哈希函数将键转换为数组索引,实现高效查找。dictEntry结构巧妙地封装了键(key)、值(value)以及指向下一个节点的指针,构成了数据存储的基本单元。同时,dict包含一系列操作函数,包括哈希计算、键值复制、比较以及销毁操作,这些函数的指针类型(dictType)和实际数据结构共同构建了其高效性能。
在字典的管理中,rehash是一个关键概念,它标志着哈希表的重新分布过程。rehash标志是一个计数器,用于跟踪当前哈希表实例的状态,确保在负载过高时进行扩容。当ht_used[0]非零,且满足特定条件(如元素数量超过初始桶数),服务器会触发resize操作,这通常在serverCron定时任务中进行,以避免磁盘I/O竞争。
rehash过程中,Redis采取渐进式策略,通过dictRehash函数,逐个移动键值对到新哈希表,确保操作的线程安全。为了避免长时间阻塞,这个过程被分散到函数中,并通过serverCron定时任务,以毫秒级的步长进行,确保在无磁盘写操作时进行。
在处理过期键时,dictRehashMilliseconds()函数扮演重要角色,它在rehash时监控时间消耗,确保性能。rehash过程中,dictAdd负责插入新哈希表,而dictFind和dictDelete则需处理ht_table[0]和ht_table[1]的键值对。
Redis的默认哈希算法采用SipHash,保证了数据的分布均匀性。在持久化时,负载因子默认设置为5,而rehash后,数据结构会采用迭代器的形式,分为安全和非安全两种,以满足不同场景的需求。
在实际操作中,如keysCommand,会选择安全模式以避免重复遍历,而在处理大规模数据时,如scan命令,可能需要使用非安全模式,但需注意可能带来的问题。
总的来说,Redis的字典数据结构是其高效性能的基石,通过精细的哈希管理、rehash策略以及迭代器设计,确保了在高并发和频繁操作下的稳定性和性能。深入理解这些内部细节,对于优化Redis性能和应对复杂应用场景至关重要。