1.VirtualAPP源码解析-Native Hook技术
2.如何从源码编译OpenCV4Android库
3.Android 10属性系统原理,检测与定制源码反检测
VirtualAPP源码解析-Native Hook技术
Native Hook技术在VirtualAPP中的应用背景在于虚拟APP的文件访问重定向。VirtualAPP作为子进程启动一个虚拟APP时,文件存储路径会默认指向VirtaulAPP的data目录。这可能导致文件访问冲突,且无法实现APP间的绩效管理源码隔离。VirtualAPP通过Native Hook技术解决了这个问题,让每个APP有独立的文件存储路径。
实现原理关键在于VClientImpl的startIOUniformer方法,通过进行存储路径映射,将子进程访问的目录路径转换为虚拟app路径。这个过程通过调用IOUniformer.cpp的startUniformer方法实现。我们知道Android系统基于Linux内核,文件读写操作通过库函数进行系统调用。dhcpcd 源码分析因此,Native Hook技术实现方式是替换libc库函数的方法,将输入参数替换为虚拟app路径,从而实现文件访问路径的重定向。
要确定需要hook的函数,开发者需要查看libc源码。Native Hook技术有PLT Hook与Inline Hook两种实现方式。PLT Hook主要通过替换程序链接表中的地址,而Inline Hook则直接修改汇编代码,实现更广泛的场景与更强的能力。虚拟app使用的第三方开源项目Cydia Substrate实现了Inline Hook方案,而爱奇艺开源的xHook则采用了PLT Hook方案。虚拟app通过宏定义灵活运用这两种Hook方案,足彩软件源码实现对libc库函数的替换。
Native Hook技术的实现过程涉及到so动态链接、ELF文件格式、汇编指令等知识,其具体步骤包括定义Hook调用和替换方法。例如,通过HOOK_SYMBOL宏定义函数指针,HOOK_DEF宏定义替换函数,最终通过hook_function方法实现Hook操作。MSHookFunction函数即为Cydia Substrate提供的Hook能力。
学习Native Hook技术需要逐步积累,理解其原理和实现过程需要时间和实践。后续文章将深入探讨MSHookFunction的object项目源码具体实现原理,进一步帮助读者掌握Native Hook技术。
如何从源码编译OpenCV4Android库
本文介绍如何从源码编译OpenCV4Android库,解决实际应用中遇到的问题。
通常,Android平台已有官方提供的OpenCV库,但实际应用中可能会遇到无法同时使用SNPE(高性能神经网络加速库)和OpenCV的问题,因为SNPE使用的STL链接的是libc++,而OpenCV默认使用的是gnu_stl,这会导致gradle配置无法正常编译。
为解决此问题,需要自行编译OpenCV4Android库,可选择在Linux下基于NDK编译,或在Windows中使用MinGW编译。经营游戏 源码本文选择前者,便于生成Docker镜像,方便部署。
对于已经配置好的编译镜像,可通过Docker命令启动,并设置环境变量。若需修改NDK或SDK版本,同样更新环境变量。然后进入目录开始编译,修改编译选项。
若从头开始搭建编译环境,首先生成基于Ubuntu.的Docker基础容器,安装基础工具,如vim、ant或gradle。安装与配置Cmake,确保版本为3.6或以上,以支持HTTPS,避免编译过程中的文件下载失败。安装JDK和Android SDK,并配置环境变量。
下载OpenCV源码和contrib库,选择合适的分支以避免编译错误。编译过程可使用指定配置文件ndk-.config.py,选择需要编译的指令集、STL库等。
完成编译后,即可得到OpenCV-Android-SDK库,适用于Android Studio中的Java或C++接口使用,提供方便的计算机视觉功能。
Android 属性系统原理,检测与定制源码反检测
本文基于看雪论坛精华内容,由作者飞翔的猫咪探讨Android 属性系统的深层次理解,包括检测与反检测策略。这些属性在Android系统中扮演着设备信息和运行时配置的关键角色,对于改机和设备指纹收集至关重要。
Android属性系统的基础构建在键值对上,每个属性都有类型(如string、int、bool),并由SELinux上下文保护。初始化和修改属性的过程涉及init进程通过mmap映射/dev/__properties__目录下的文件到进程的虚拟内存区域,以共享内存方式实现进程间通信。只有init进程能创建和修改属性,其他进程通过socket与init通信,而普通app受限于权限,无法直接操作。
属性主要分为ro(只读)、persist(持久化)、ctl(控制)和selinux.restorecon_recursive,各有不同的处理逻辑。为了提升效率,Android在文件格式设计上考虑了频繁获取的场景,并使用属性缓存机制,这对改机技术构成挑战。
属性同步通过包装futex系统调用实现,getprop工具则用于获取属性值,提供参数选项以获取上下文和类型信息。属性的核心API在bionic libc的头文件中定义,需通过特定宏定义来正确包含。
系统开发者倾向于通过预定义的接口使用属性,而非直接调用,如__system_property_set_value和__system_property_find等,它们分别用于设置和查找属性。设置权限由selinux策略通过set_prop宏管理,如system_app域可设置特定属性。
属性系统通过__system_property_read_callback和缓存机制提高效率,如CachedProperty.h文件中的函数。遍历属性和等待属性变化的功能分别由system_property_foreach和WaitForProperty实现。部分接口已废弃,但仍在部分框架代码中使用。
总结来说,属性系统的核心是init进程管理和响应其他进程的通信请求,而普通app在权限和策略的限制下,操作受限。理解这些原理对于深入研究和安全定制Android系统至关重要。