1.如何理解python@contextmanager装饰器源码?源码
2.consulmanager部署和使用
3.UE4 计时器管理 FTimerManager源码剖析
4.Framework层的Binder(源码分析篇)
5.一文总结Android系统服务大管家-ServiceManager
6.Android源码阅读分析:ActivityManagerService分析(一)——启动流程
如何理解python@contextmanager装饰器源码?
理解@contextmanager装饰器的关键在于其如何简化上下文管理器的实现。通过将其包装在生成器函数中,推荐我们能使用with语句轻松执行前置和后置操作,源码而无需复杂的推荐try/finally语句。
@contextmanager的源码实现依赖生成器和yield语句。当创建一个使用@contextmanager装饰器的推荐ssc自动挂机源码上下文管理器时,Python解释器会首先调用生成器函数的源码__enter__方法,返回生成器对象。推荐接着,源码解释器调用生成器对象的推荐__next__方法,执行yield语句前的源码代码。这允许我们在yield前执行前置操作,推荐并在yield后执行后置操作。源码当离开with语句时,推荐解释器会调用生成器的源码__exit__方法,执行清理操作。
在使用with语句时,我们期望所有异常能够被处理,而不是向上抛出。在@contextmanager生成的上下文管理器中,通过try/except语句捕获所有异常,并将它们传递给yield语句。生成器函数决定是否处理这些异常,否则,异常将被重新抛出。
总之,@contextmanager装饰器通过在生成器函数中实现上下文管理器,创新整站源码使得我们能够轻松使用with语句执行前置和后置操作。异常处理则通过try/except与yield语句结合,确保所有异常都能被妥善处理,同时保持代码简洁。
下面是一个使用@contextmanager装饰器的示例:
定义一个生成器函数my_context(),使用@contextmanager装饰器转换为上下文管理器。在with语句块开始时,打印一条消息。yield语句将控制权传递给with块内的代码,将返回值赋给message。with块结束后,打印一条离开上下文的消息。
输出结果将显示进入和离开上下文的提示信息。如果在with块内部出现异常,finally语句块将确保上下文正确清理,即使异常发生。
consulmanager部署和使用
书接上回 渐行渐远:prometheus的安装以及监控指标的配置
这次主要介绍如何使用consulmanager 去监控各个监控项
一 consulmanager安装
github.com/starsliao/Te... #consulmanager项目地址
consulmanager 是一个开源的项目,现在已经更名为tensuns,有兴趣的可以自行研究
要想安装consulmanager,必须先安装下面三个 docker ,docker-compase, consul
1.1 安装consul
1.1.1 安装consul-基于centos7
1.1.2 生成uuid
1.1.3 配置文件设置
1.1.4 启动consul
访问方式 ip:
1.2 安装docker和docker-compase
1.2.1 安装docker
1.2.2 安装docker-compase
二 安装 ConsulManager
2.1 下载源码
下载地址 github.com/starsliao/Co...
目录结构如下:
2.2 docker-compose.yml 内容
2.3 启动并访问
三 配置consulmanager
3.1 云主机管理
3.1.1 同步云主机
云主机管理就是可以自动同步云服务器到consulmanager这个上面
前提是需要你在云账号里面创建access key 和secret key,这个账号还需要有访问主机的权限
新增云资源
创建完成之后,你可以手动同步,也可以自动同步,然后去云主机列表查看,是chrome源码 大小否同步过来了
3.1.2 批量云主机监控
前提是每天主机需要安装好node-exporter
选定好指定的组,选择好系统,点击生成配置,然后把这个配置,粘贴到prometheus的配置文件中
进行重启prometheus
然后进去到prometheus-target里进行查看
当然如果你的node-exporter的端口不是,怎么办,打开cousul的web页面,可以自定义设置
3.1.3 导入对应的模版
导入ID:
详细URL: grafana.com/grafana/das...
3.1.4 设置告警规则
3.2 blackbox站点监控设置
3.2.1. 配置Blackbox_Exporter
在Web页面点击
Blackbox 站点监控/Blackbox 配置,点击
复制配置,如下所示:
复制配置到 blackbox.yml,清空已有的配置,把复制的内容粘贴进去,重启blackbox_exporter
3.2.2 配置Prometheus
在Web页面点击 Blackbox 站点监控/Prometheus 配置,点击复制配置。编辑Prometheus的
prometheus.yml,把复制的内容追加到最后,reload或重启Prometheus
3.2.3. 配置Prometheus告警规则
在Web页面点击
Blackbox 站点监控/告警规则,点击复制配置。
编辑Prometheus的配置文件,添加 rules.yml,然后把复制的内容粘贴到rules.yml里面,reload或重启Prometheus。
然后去prometheus查看告警规则是否生成
3.2.4. 查看Prometheus
在Prometheus的Web页面中,点击Status-Targets,能看到新增的Job即表示数据同步到Prometheus。
3.2.5 新增tcp或者/grafana/das...
最终在grafana访问的效果如下:
四 总结
到这里基本的监控项和报警规则都已经设定好了,接下来会介绍告警的方式和具体实现
UE4 计时器管理 FTimerManager源码剖析
深入剖析UE4中的计时器管理系统FTimerManager,揭示其核心实现与优化细节。go select源码在游戏开发中,精准的计时管理对实现流畅的物理交互和高效的性能优化至关重要。UE4提供了丰富的计时器功能,FTimerManager作为其核心组件,为开发者提供了一套灵活、高效的计时解决方案。
FTimerManager通过FTimerUnifiedDelegate机制,允许开发者在任意时间点绑定逻辑到计时器上。这一设计使得计时逻辑的实现更加灵活,能够根据不同需求选择合适的执行时机。同时,FTimerManager支持计时器的暂停、重启和清除操作,为动态调整计时逻辑提供了便利。
在实现细节上,FTimerManager通过稀疏数组TSparseArray来高效管理计时器列表,避免了传统数组的冗余内存使用,提升了内存管理和性能效率。这种数据结构在插入新计时器时,优先填补空洞,确保了空间使用的优化。
当提及计时器的更新逻辑,FTimerManager在Tick函数中进行轮询处理。这一过程中,FTimerManager不仅维护了活跃计时器的状态,还负责在合适的hotspot 源码实战时间点触发计时逻辑,确保逻辑的执行准确无误。此外,ETimerStatus数据类型用于记录每个计时器的生命周期状态,便于后续操作和状态管理。
总结而言,FTimerManager在UE4中扮演着关键角色,不仅提供了高效、灵活的计时管理功能,还通过优化的数据结构和高效的时间管理机制,显著提升了游戏性能和开发效率。深入研究其源码,不仅能够对UE4的底层逻辑有更深刻的理解,还能启发开发者在自己的项目中进行创新和优化。
Framework层的Binder(源码分析篇)
本文以android-.0.0_r的AOSP分支为基础,解析framework层的Binder工作原理。
从ServiceManager的getService方法入手,其核心代码是通过getIServiceManager().getService(name)获取服务。首先,ServiceManager的实现与进程中的ProcessState密切相关,ProcessState是单例,负责打开和映射Binder驱动。构造函数中,它会初始化驱动、验证版本并设置线程数,接着进行binder映射。
在ProcessState的getContextObject方法中,调用native函数android_util_Binder.cpp中的getContextObject()。这个函数通过handle 0(ServiceManager的handle)获取BpBinder对象,然后通过javaObjectForIBinder函数将其转换为Java中的类型。
进一步分析,BpBinder与java层的Binder之间存在对应关系,通过BinderProxy NativeData创建单例的BinderProxy。然后,每个服务的BinderProxy实例化和计数处理都在这个过程中完成。ServiceManagerNative.asInterface方法简化了getIServiceManager的调用,通过调用asInterface实例化ServiceManagerProxy。
IServiceManager接口通过AIDL生成,其代理类ServiceManagerProxy实际上是不必要的。aidl文件在编译时生成对应java代码,用于binder通信。通过aidl文件,我们可以看到如queryLocalInterface等方法的实现细节。
在Parcel的协助下,客户端与服务端进行数据传递,通过序列化和反序列化进行交互。在transact函数中,对Parcel大小进行检查,避免数据传输过大导致的问题。最后,客户端与binder驱动的通信过程涉及了Transaction数据的写入、等待响应、数据处理和内存回收等步骤。
总的来说,framework层的Binder工作涉及服务管理、数据转换、通信协议和内存管理等环节,理解这些有助于深入掌握Binder的工作机制。
一文总结Android系统服务大管家-ServiceManager
本文以源码文件为切入点,旨在解析Android系统服务大管家 - ServiceManager的具体运作。首先介绍ServiceManager简介,定义了其为C/C++编写的系统服务,并说明其源码位于/framework/native/cmds/servicemanager,通过Android.bp文件明确,该服务以程序方式构建,启动入口位于main.cpp的main()函数。运行期间,ServiceManager将不断执行looper->pollAll(-1)操作,并默认依托于设备节点/dev/binder,同时也允许通过参数设置自定义节点。ServiceManager作为binder机制的核心组件,负责实现进程间通信。
文章接下来指出在Android.bp文件中,ServiceManager对应程序名为servicemanager,同样存在vndservicemanager程序。两者的源码一致,主要差异在于rc文件,vndservicemanager通过/dev/vndbinder作为binder驱动。在Android启动时,vndservicemanager和servicemanager都被init拉起,它们的功能区别体现在如何指定binder驱动路径。
文章深入探讨ServiceManager的启动过程。首先介绍init进程由内核管理,该进程在启动时,依据init.rc文件拉起关键服务进程,其中包括ServiceManager。在特定目录下(/framework/native/cmds/servicemanager/),存在servicemanager.rc文件,这是servicemanager初始化的配置文件。
进入ServiceManager详细剖析阶段。主要步骤包括获取驱动名称、初始化进程状态、创建ServiceManager实例、设置上下文对象、创建并启动looper,并执行pollAll操作。其中获取驱动名称步骤依据命令行参数或默认采用/dev/binder。初始化进程状态涉及调用initWithDriver()设置libbinder支持特定驱动,同时为进程配置参数。创建ServiceManager实例并作为上下文对象,随后创建并启动looper,执行pollAll(-1)完成核心服务功能实现。
文章最后指出ServiceManager的唤醒时机,通常发生在系统启动、服务注册、通信调用等场景。在Android系统中,ServiceManager的作用主要为实现应用程序与系统组件之间通过Binder机制的跨进程通信,访问和管理系统级服务,从而提供丰富的功能扩展性和灵活性。
Android源码阅读分析:ActivityManagerService分析(一)——启动流程
本文深入解析了Android源码中的ActivityManagerService,即AMS的核心功能与启动流程。AMS作为管理Android四大组件的关键组件,其重要性不言而喻。本篇将从AMS的创建与启动逻辑开始分析,为理解其内部机制打下基础。
AMS的创建始于SystemServer的startBootstrapServices方法。此方法通过SystemServiceManager的startService方法启动Lifecycle类实例,从而创建AMS对象。Lifecycle作为适配器,连接了AMS与SystemService之间的交互。再通过Lifecycle的构造器,创建出AMS实例。
创建过程中,AMS线程、UI线程、CpuTracker线程和系统目录被初始化,同时StackSupervisor与ActivityStarter也得以创建,完成AMS对象的创建。
随后,ActivityManagerService的startService(SystemService)方法执行,完成服务的注册与启动。Lifecycle的onStart方法调用ActivityManagerService的start方法,启动关键操作。
在SystemServer的startBootstrapServices方法中,创建完AMS后,执行其setSystemProcess方法,为系统进程启动Application实例与服务注册。然后,SystemServer继续调用startBootstrapServices、startCoreServices与startOtherServices方法,启动更多系统服务与持久化进程,完成桌面Activity的启动与广播发布。
文中总结了AMS创建与启动的关键步骤,并预告后续文章将深入探讨AMS的具体使用、对四大组件的管理以及内存管理等内容。通过本篇解析,读者能更直观地理解Android系统中AMS的核心功能与作用。
AndroidFramework ä¹å¯å¨ ServiceManager
æ¬ææºç åºäº Android ï¼æ¶åç¸å ³æºç å¦ä¸ãServiceManagaer æ¯ Binder çå®æ¤è¿ç¨ï¼å¨ Binder æºå¶ä¸èµ·çéè¦çä½ç¨ãæ¬æå°ä»æºç çè§åº¦å¯¹å ¶è¿è¡åæï¼æ´ä½æµç¨å¦ä¸ï¼
æ¶åºå¾å¦ä¸ã
å æ¥çç ServiceManager æ¯å¦ä½å¯å¨çï¼
å¨ Zygote ä¸æä¸è¯´è¿ï¼ init è¿ç¨å¯å¨ç第äºé¶æ®µä¼è§£æ init.rc æ件ã
å¨è¿ä¹åä¼è§¦å trigger init ã
ç»å init.rc çç action init åäºä»ä¹ã
å½è§¦å trigger init åï¼ä¼å¯å¨ servicemanager æå¡ï¼å ¶å£°æå¦ä¸ã
对åºçæ§è¡æ件为 /system/bin/servicemanager ï¼å¨ç¼è¯åä½äº frameworks/native/cmds/servicemanager ä¸ï¼æ¥çç Android.bp ã
å ¶å¯¹åºçæºç 为 service_manager.c å binder.c ï¼å ¥å£å½æ° main() ä½äº servicemanager.c ã
å¯å¨å® ServiceManager åä¼æå¼ Binder 驱å¨ã
å¨ main() ä¸é¦å è°ç¨ binder_open() ã
binder_open() 主è¦åäºå¦ä¸äºæ ï¼
ç»ç»æä½ binder_state åé å åã
ç³»ç»è°ç¨ open() æå¼ /dev/binder ï¼å¦ææå¼é©±å¨å¤±è´¥ï¼åæ§è¡ fail_open éæ¾å åã
ç®åç解éä¸ä¸ä»ä¹æ¯ç³»ç»è°ç¨ï¼
ç±äºéè¦éå¶ä¸åçç¨åºä¹é´ç访é®è½åï¼é²æ¢ç¨åºè·åå«çç¨åºçå åæ°æ®ï¼ CPU åååºä¸¤ä¸ªæéç级ï¼ç¨æ·æå å æ ¸æã
ææçç¨æ·ç¨åºé½æ¯è¿è¡å¨ç¨æ·æï¼ä½ææ¶éè¦åä¸äºå æ ¸æçäºæ ï¼èå¯ä¸å¯ä»¥åè¿äºäºæ çå°±æ¯æä½ç³»ç»ï¼æ以ç¨åºéè¦åæä½ç³»ç»å起请æ±ï¼ä»¥ç¨åºçååæ¥æ§è¡è¿äºæä½ãè¿æ¶å°±éè¦ä¸ä¸ªä»ç¨æ·æåæ¢å°å æ ¸æä½ä¸è½æ§å¶å æ ¸æä¸æ§è¡çæºå¶ï¼è¿ç§æºå¶å°±æ¯ ç³»ç»è°ç¨ã
ç³»ç»è°ç¨ ioctl() ä¼ å ¥ BINDER_VERSION å½ä»¤è·å Binder 驱å¨çæ¬ï¼å¯¹æ¯çæ¬æ¯å¦ä¸è´ï¼ä¸ä¸è´åæ§è¡ fail_open éæ¾å åã
ç³»ç»è°ç¨ mmap() æ å° kb çå å空é´ï¼å³æ Binder 驱å¨æ件ç kb æ å°å°å å空é´ä¾ ServiceManager 使ç¨ï¼å åæ å°å¤±è´¥åæ§è¡ fail_map ï¼å ³é fd 并éæ¾å åã
ServiceManager è¿ç¨ mmap çå å大å°å¯ä»¥éè¿ adb shell å½ä»¤æ¥çã
å¯ä»¥çå°å åæ å°å°å为 0xff ~ 0xf ï¼å·®ä¸º 0x å³åè¿å¶ç kb ã
æå¼ Binder 驱å¨åä¼å° ServiceManager 设置为ä¸ä¸æ管çè ã
è°ç¨ binder_become_context_manager() ã
android æ°å¢ BINDER_SET_CONTEXT_MGR_EXT å½ä»¤æ¥è®¾ç½®å®å ¨çä¸ä¸æ管çè ï¼å¦æ设置失败ï¼å使ç¨åæç BINDER_SET_CONTEXT_MGR å½ä»¤æ¥è®¾ç½®ä¸ä¸æ管çè ï¼ä¸¤è åºå«å¨äºæ¯å¦æºå¸¦åæ°ã
æåä¼è¿å ¥å¾ªç¯ï¼ä» Binder 驱å¨è¯»åå解ææ°æ®ã
è°ç¨ binder_loop() è¿å ¥å¾ªç¯ï¼ä¸æå°éè¿ç³»ç»è°ç¨ ioctl() ä» Binder 驱å¨è¯»åæ°æ®ï¼å¹¶éè¿ binder_parse() è¿è¡æ°æ®è§£æã
注æè¿éè°ç¨ binder_loop() ä¼ å ¥ç svcmgr_handler() ï¼åé¢ä¼ä½¿ç¨å°ã
binder_write() ä¼å°è£ struct binder_write_read ï¼å¹¶éè¿ç³»ç»è°ç¨ ioctl() å°å¯¹åºçå½ä»¤ä¼ éç» Binder 驱å¨ã
binder_parse() ç¨æ¥è§£æä» Binder 驱å¨è¯»åå°çæ°æ®ï¼ç¶åæ ¹æ®ä¸åçå½ä»¤æ§è¡å¯¹åºçæä½ã
å 为 cmd å½ä»¤å¯è½æå¤ä¸ªï¼æ以éè¿ while 循ç¯æ¯æ¬¡å¤çä¸ä¸ª cmd å½ä»¤ï¼å¤ cmd çç»æ大è´å¦ä¸å¾æ示ã
è¿ééç¹çä¸ BR_TRANSACTION å½ä»¤ã
BR_TRANSACTION æ¯ Binder 驱å¨å Server 端åé请æ±æ°æ®ã
binder_transaction_data çç»æå¦ä¸ï¼å ¶è¡¨æäº transcation ä¼ è¾çå ·ä½è¯ä¹ï¼è¯ä¹ç è®°å½å¨ code ä¸ï¼ä¸åè¯ä¹ç æºå¸¦çæ°æ®æ¯ä¸åçï¼è¿äºæ°æ®ç± data æå®ã
å¨è§£æå® binder_transaction_data çå ·ä½è¯ä¹åï¼ä¼è°ç¨åé¢ä¼ ç» binder_loop() ç svcmgr_handler() ï¼å ¶å®å°±æ¯ switch case è¯ä¹ç åä¸åçäºæ ã
ServiceManager çåè½å ¶å®å¾ç®åï¼
è³æ¤ ServiceManager å°±åæå®äºã
2024-12-22 15:59
2024-12-22 15:56
2024-12-22 15:18
2024-12-22 15:13
2024-12-22 14:48
2024-12-22 14:05