皮皮网

【weex源码ios】【干盏溯源码燕窝订做】【话费充值系统源码网页版本】rocm源码解析

时间:2024-12-23 06:15:55 来源:奇迹转生源码

1.从源码build Tensorflow2.6.5的源码记录
2.12月7日凌晨,amd召开发布会,正式推出ai芯片mi300xgpu,对
3.在AMD GPU上实现高性能LLM推理
4.ROCm-RV生态分析
5.手把手带你学webpack(6)--source-map
6.AMD的ROCM平台是什么?

rocm源码解析

从源码build Tensorflow2.6.5的记录

       .从源码编译Tensorflow2.6.5踩坑记录,笔者经过一天的解析努力,失败四次后终于成功。源码Tensorflow2.6.5是解析截至.时,能够从源码编译的源码最新版本。

       0 - 前期准备

       为了对Tensorflow进行大规模修改并完成科研工作,解析weex源码ios笔者有从源码编译Tensorflow的源码需求。平时更常用的解析做法是在conda环境中pip install tensorflow,有时为了环境隔离方便打包,源码会用docker先套住,解析再上conda + pip安装。源码

       1 - 资料汇总

       教程参考:

       另注:bazel的解析编译可以使用换源清华镜像(不是必要)。整体配置流程的源码根本依据还是官方的教程,但它的解析教程有些点和坑没有涉及到,所以多方材料了解。源码

       2 - 整体流程

       2.1 确定配置目标

       官网上给到了配置目标,和对应的版本匹配关系(这张表里缺少了对numpy的版本要求)。笔者最后(在docker中)配置成功的版本为tensorflow2.6.5 numpy1..5 Python3.7. GCC7.5.0 CUDA.3 Bazel3.7.2。

       2.2 开始配置

       为了打包方便和编译环境隔离,在docker中进行了以下配置:

       2. 安装TensorFlow pip软件包依赖项,其编译过程依赖于这些包。

       3. Git Tensorflow源代码包。

       4. 安装编译工具Bazel。

       官网的介绍:(1)您需要安装Bazel,才能构建TensorFlow。您可以使用Bazelisk轻松安装Bazel,并且Bazelisk可以自动为TensorFlow下载合适的Bazel版本。为便于使用,请在PATH中将Bazelisk添加为bazel可执行文件。(2)如果没有Bazelisk,您可以手动安装Bazel。请务必安装受支持的Bazel版本,可以是tensorflow/configure.py中指定的介于_TF_MIN_BAZEL_VERSION和_TF_MAX_BAZEL_VERSION之间的任意版本。

       但笔者尝试最快的安装方式是,到Github - bazelbuild/build/releases上下载对应的版本,然后使用sh脚本手动安装。比如依据刚才的配置目标,笔者需要的是Bazel3.7.2,所以下载的文件为bazel-3.7.2-installer-linux-x_.sh。

       5. 配置编译build选项

       官网介绍:通过运行TensorFlow源代码树根目录下的./configure配置系统build。此脚本会提示您指定TensorFlow依赖项的位置,并要求指定其他构建配置选项(例如,编译器标记)。

       这一步就是选择y/N基本没啥问题,其他参考里都有贴实例。笔者需要GPU的支持,故在CUDA那一栏选择了y,其他部分如Rocm部分就是N(直接按enter也可以)。

       6.开始编译

       编译完成应输出

       7.检查TF是否能用

       3 - 踩坑记录

       3.1 cuda.0在编译时不支持sm_

       笔者最初选择的docker是cuda.0的,在bazel build --config=cuda //tensorflow/tools/pip_package:build_pip_package过程中出现了错误。干盏溯源码燕窝订做所以之后选择了上面提到的cuda.3的docker。

       3.2 问题2: numpy、TF、python版本匹配

       在配置过程中,发现numpy、TF、python版本需要匹配,否则会出现错误。

       4 - 启示

       从源码编译Tensorflow2.6.5的过程,虽然经历了多次失败,但最终还是成功。这个过程也让我对Tensorflow的编译流程有了更深入的了解,同时也提醒我在后续的工作中要注意版本匹配问题。

月7日凌晨,amd召开发布会,正式推出ai芯片mixgpu,对

       AMD在月7日凌晨的发布会上,正式推出了AI芯片MIX GPU。此款芯片主要针对高精度HPC场景设计,同时在AI所需的低精度矩阵计算方面表现出色,因此被AMD巧妙地用作AI芯片进行营销。发布会后,AMD股价涨幅达到了%。

       为什么MIX能够取得如此显著的市场反应呢?这可以从AMD官方提供的PPT中找到答案。简要概括,MIX在高精度计算方面展现出色性能,其理论性能是H的2.4倍。尽管在AI方面,性能仅为原生SM的Hopper的1.3倍,相比优势不大。然而,对于需要覆盖不同需求的市场,MIX的单一架构优势明显。

       AMD在立项MIX时并未预见到AI计算卡市场的繁荣,仅将其视为主要场景之一。与全心投入AI领域的NVIDIA相比,AMD的策略更为稳健。尽管如此,AMD的GPGPU软硬件产品线从未间断,即使方向与NVIDIA不同,也通过加班赶工及时推出了可用方案。

       AMD凭借在LLM盛行时期推出的8-stack HBM技术,获得了一定的先发优势。在低精度矩阵算力方面,MIX的绝对性能同样强大。综合考量各方面的现状,按照云厂商的标准,MIX作为AI产品能以与H相似的价格销售,尽管其制造成本可能更高。

       值得注意的是,MIX所处的市场生态位原本可能被另一家厂商占据,但其产品线经历了多次延期和重新规划后,话费充值系统源码网页版本MIX的竞品至少要等到年才能广泛投入使用。那时,市场剩余的可分割份额可能已大幅减少。

       此外,ROCm是目前唯一一个几乎不需要修改代码即可使用的CUDA替代品。在PyTorch等场景中,使用ROCm甚至可以完全沿用基于CUDA的API,无需更改代码。这是AMD计算卡在面对非NVIDIA竞品时的一大优势。

       ROCm自诞生以来,就以源码级别兼容CUDA为目标,在HPC客户和互联网大厂之间经历了数年的磨练,积累了足够的经验,提供了可用级别的竞品。即使是RDNA游戏卡,也能从ROCm中获得一些好处。在Linux环境下运行GitHub上热门的LLM/AIGC项目,配置环境和移植插件相对容易,尽管RDNA产品的AIGC性能可能不如MIX那样突出。

在AMD GPU上实现高性能LLM推理

       在AMD GPU上实现高性能LLM推理,采用ROCm编译LLM(大语言模型)并在其上部署,可以达到显著的性能。具体而言,在Llama2-7B/B上,AMD Radeon™ RX XTX的推理性能可达到NVIDIA® GeForce RTX™ 速度的%,NVIDIA® GeForce RTX™ Ti速度的%。Vulkan支持同样使得LLM部署可以推广到其他AMD设备,如搭载了AMD APU的SteamDeck。

       自从开源LLM的快速发展,性能优秀的推理解决方案大多基于CUDA,并针对NVIDIA GPU进行了优化。然而,随着计算需求的日益增长,扩展到更广泛的硬件加速器类别变得尤为重要。AMD GPU被视为潜在的选项之一。

       硬件指标和软件栈对比显示,AMD的RX XTX与NVIDIA的RTX Ti在规格上相当。过去AMD在硬件性能上落后于NVIDIA的主要原因并不是硬件本身,而是软件支持和优化。然而,目前的生态系统中,这一差距正在逐步缩小。本文将深入探讨在AMD GPU上实现大模型推理的解决方案与NVIDIA GPU+CUDA的高效解决方案相比性能如何。

       机器学习编译(MLC)是一种新兴技术,旨在编译和自动优化机器学习模型。MLC解决方案利用MLC-LLM,它建立在Apache TVM Unity之上,后者是一个基于Python的高效开发和通用部署的机器学习编译软件栈。MLC-LLM支持CUDA、有源码怎么用vc编译Metal、ROCm、Vulkan和OpenCL等后端,涵盖了从服务器级别GPU到移动设备的广泛范围。通过MLC-LLM,用户可以使用基于Python的工作流程获取开源的大语言模型,并在包括转换计算图、优化GPU算子的张量布局和调度以及在感兴趣的平台上本地部署时进行编译。

       针对AMD GPU和APU的MLC,有几种可能的技术路线,包括ROCm、OpenCL、Vulkan和WebGPU。ROCm技术栈与CUDA有许多相似之处,而Vulkan是最新图形渲染标准,为各种GPU设备提供了广泛支持。WebGPU是最新Web标准,允许在Web浏览器上运行计算。然而,很少有解决方案支持除了CUDA之外的方法,主要是因为复制新硬件或GPU编程模型的技术栈的工程成本过高。MLC-LLM支持自动代码生成,无需为每个GPU算子重新定制,从而为以上所有方法提供支持。性能优化最终取决于GPU运行时的质量以及在每个平台上的可用性。

       在AMD GPU上实现高性能LLM推理的解决方案提供了与NVIDIA GPU相当的性能。ROCm5.6下,AMD XTX可以达到NVIDIA 速度的%,考虑到CUDA性能,MLC-LLM是CUDA上大语言模型推理的最优解决方案,但仍有改进空间,如通过更好的attention算子优化。在查看性能测试结果时,建议放置%的误差。

       为了复现性能数据,用户可以利用预构建的安装包和使用说明,确保Linux系统上安装了ROCm 5.6或更高版本的AMD GPU。通过遵循说明安装启用了ROCm的预构建MLC pacakge,运行Python脚本以复现性能数据。此外,MLC-LLM还提供了一个命令行界面CLI,允许用户与模型进行交互式聊天。对于ROCm,需要从源代码构建CLI。

       在SteamDeck上运行Vulkan时,使用统一内存最多可达GB,足以运行4位量化的Llama-7B。这些结果为支持更多不同类型的消费者提供了启示。

       讨论和未来的白金版主图指标源码方向指出,硬件可用性是生成式AI时代的关键问题。ML编译通过在硬件后端之间提供高性能的通用部署,提高硬件的可用性。基于AMD GPU的解决方案在适当的价格和可用性条件下具有潜力。研究目前重点关注消费级GPU,优化通常可以推广到云GPU。我们有信心该解决方案在云和消费级AMD和NVIDIA GPU之间具有普适性,并将在更多GPU访问权限后更新研究。我们鼓励社区在MLC通用部署流程的基础上构建解决方案。

       本文是通过MLC支持高效通用机器学习部署研究的一个阶段性努力,我们正积极地在几个方向上努力推广研究。我们最终的结论是,机器学习系统工程是一个持续的问题。关键问题不仅是构建正确的解决方案,还包括不断更新并解决硬件可用性问题。基于Python的ML编译开发流程使得我们可以在几小时内获得ROCm优化的支持,这在我们探索更多关于通用部署的想法时变得尤为重要。

       相关资源包括GitHub上的项目发布、详细指南、MLC LLM的源代码、Discord频道以及运行在浏览器里的LLM解决方案Web-LLM。我们特别感谢CMU、UW、SJTU、OctoML团队成员以及开源社区的支持,特别感谢Apache TVM社区、TVM Unity开发人员、LLaMA、Alpaca、Vicuna团队和huggingface、pytorch等开源社区的帮助。

ROCm-RV生态分析

       ROCm(Radeon Open Compute)是一个开放源代码的软件平台,其核心功能在于支持AMD GPU的并行计算与加速计算任务。该平台提供了一系列工具和库,方便开发者利用AMD GPU性能进行高性能计算、深度学习和机器学习等任务。然而,ROCm的成熟度相对CUDA而言有所不足。ROCm主要针对Linux系统,而CUDA则广泛兼容包括Windows、Linux和macOS等操作系统平台。

       ROCm的底层结构基于Linux的admgpu Driver,而RV生态的基础则是Linux显卡驱动。此驱动包含部分闭源代码,且目前尚不完全清楚RV生态下的开源GPU已达到何种程度。在开始讨论RV硬件生态环境之前,我们先来看看AMD通过ROCm支持的GPU硬件设备。

       AMD的ROCm支持涵盖AMD Instinct、AMD Radeon PRO和AMD Radeon三个GPU系列。国内开发者主要接触到的是AMD Radeon PRO和AMD Radeon两个系列,分别面向专业工作站和消费市场。ROCm未来将淘汰的GPU型号,开发者在RV生态开发时可将其置于次要优先级。

       接下来,我们探讨RV生态的移植平台分析。市面上的SG处理器基本满足桌面端与服务端需求,具备单路与双路实现能力。以XTX为例,其需要PCIe 4.0 X通道,SG能够满足这一需求,因此硬件环境符合要求。

       至于RV生态中对GPU的支持情况,RISC-V已全面支持旧款GCN架构显卡,并正在支持Navi架构GPU。当前Linux内核版本已更新至V6.9,对于Navi架构GPU的支持可进行验证。同时,老款GCN架构显卡在ROCm中被舍弃,需要特定版本支持特定GPU。

       综上所述,RV生态支持ROCm需同时考虑软硬件配合。当前硬件环境基本满足要求,但不如X或ARM平台丰富。对于软件开发者而言,在RV环境下运行ROCm,可能需关注以下几点。

       考虑到RV生态的建设任重道远,硬件和软件都需要大量开发才能实现多元化发展。

手把手带你学webpack(6)--source-map

       本篇文章对应源码:JvcicpO1xuXG4gIHRocmIG5ldyBFcnJvcignctZXRoaW5nIHdybnLi4uJyk7XGXG5cbm1vZHVsZS5leHBvcnRzID0geyBlcnJvckZuIHXG4iXSwibmFtZXMiOltdLCJzb3VyY2VSbIjoiIn0=\n//#sourceURL=webpack-internal:///./src/utils.js\n");

       这种方式适用于在开发模式下需要精确的source-map时使用,相比直接的eval,会更加精确些

3.4inline-source-map

       顾名思义,就是以内联方式存放source-map文件,它会将source-map文件的内容编码成base后直接放在打包结果的最后

constHtmlWebpackPlugin=require('html-webpack-plugin');const{ CleanPlugin}=require('webpack');/***@type{ import('webpack').Configuration}*/module.exports={ mode:'development',devtool:'inline-source-map',plugins:[newHtmlWebpackPlugin(),newCleanPlugin()],};//#sourceMappingURL=data:application/json;charset=utf-8;base,eyJ2ZXJzaW9uIjozLCJmaWxlIjoibWFpbi5qcyIsIm1hcHBpbmdzIjoiOzs7Ozs7Ozs7QUFBQTtBQUNBOztBQUVBO0FBQ0E7O0FBRUEsbUJBQW1COzs7Ozs7O1VDTm5CO1VBQ0E7O1VBRUE7VUFDQTtVQUNBO1VBQ0E7VUFDQTtVQUNBO1VBQ0E7VUFDQTtVQUNBO1VBQ0E7VUFDQTtVQUNBO1VBQ0E7O1VBRUE7VUFDQTs7VUFFQTtVQUNBO1VBQ0E7Ozs7Ozs7OztBQ3RCQSxRQUFRLFVBQVUsRUFBRSxtQkFBTyxDQUFDLCtCQUFTOztBQUVyQyIsInNvdXJjZXMiOlsid2VicGFjazovLzA2X3dlYnBhY2tfccmNlXhcC8uL3NyYydGlscy5qcyIsIndlYnBhY2s6Ly8wNlZWJwYWNrX3NvdXJjZV9tYXAvd2VicGFjay9ibc3RyYXAiLCJ3ZWJwYWNrOi8vMDZfd2VicGFjazb3VyY2VfbWFwLy4vc3JjL2luZGV4LmpzIl0sInNvdXJjZXNDbZWIjpbImZ1bmN0aW9uIGVycm9yRm4oKSB7XG4gIGNvbnNvbGUubG9nKCdoZWxsbyBlcnJvcicpO1xuXG4gIHRocmIG5ldyBFcnJvcignctZXRoaW5nIHdybnLi4uJyk7XGXG5cbm1vZHVsZS5leHBvcnRzID0geyBlcnJvckZuIHXG4iLCIvLyBUaGUgbW9kdWxlIGNhY2hlXGYXIgXZWJwYWNrXvZHVsZV9jYWNoZV9fID0geXG5cbi8vIFRoZSByZXF1aXJlIGZ1bmN0aW9uXG5mdW5jdGlvbiBfX3dlYnBhY2tfcmVxdWlyZV9fKG1vZHVsZUlkKSB7XG5cdC8vIENoZWNrIGlmIG1vZHVsZSBpcyBpbiBjYWNoZVxuXHR2YXIgY2FjaGVkTW9kdWxlID0gXZWJwYWNrXvZHVsZV9jYWNoZV9fWvZHVsZUlkXTtcblWYgKGNhY2hlZE1vZHVsZSAhPT0gdW5kZWZpbmVkKSB7XG5cdFx0cmV0dXJuIGNhY2hlZE1vZHVsZS5leHBvcnRzO1xuXHR9XG5cdC8vIENyZWF0ZSBhIG5ldyBtb2R1bGUgKGFuZCBwdXQgaXQgaWbyB0aGUgY2FjaGUpXG5cdHZhciBtb2R1bGUgPSBfX3dlYnBhY2tfbW9kdWxlX2NhY2hlXbbW9kdWxlSWRdID0ge1xuXHRcdC8vIG5vIG1vZHVsZS5pZCBuZWVkZWRcblx0XHQvLyBubyBtb2R1bGUubG9hZGVkIG5lZWRlZFxuXHRcdGV4cG9ydHM6IHt9XG5cdHXG5cblx0Ly8gRXhlY3V0ZSB0aGUgbW9kdWxlIGZ1bmN0aW9uXG5cdF9fd2VicGFjatb2R1bGVzXbbW9kdWxlSWRdKG1vZHVsZSwgbW9kdWxlLmV4cG9ydHMsIF9fd2VicGFjayZXF1aXJlXpO1xuXG5cdC8vIFJldHVybiB0aGUgZXhwb3J0cyBvZiB0aGUgbW9kdWxlXG5cdHJldHVybiBtb2R1bGUuZXhwb3J0cztcbn1cblxuIiwiYuc3QgeyBlcnJvckZuIH0gPSByZXF1aXJlKCcuL3V0aWxzJyk7XG5cbmVycm9yRm4oKTtcbiJdLCJuYW1lcyI6WsInNvdXJjZVJvb3QiOiIifQ==

       从官方文档可以看到,这种方式的构建速度是最慢的,只适用于构建单个文件的时候使用

3.5cheap-source-map

       这种方式相比source-map而言,没有建立列映射,也就是说遇到报错的时候,只会告诉你哪一行代码出错了,而不会告诉你哪一列出错了,如果开发时对列映射没有太高要求的话可以使用这种方式,毕竟不用生成列映射,比起source-map来说会快一些

constHtmlWebpackPlugin=require('html-webpack-plugin');const{ CleanPlugin}=require('webpack');/***@type{ import('webpack').Configuration}*/module.exports={ mode:'development',devtool:'cheap-source-map',plugins:[newHtmlWebpackPlugin(),newCleanPlugin()],};3.6cheap-module-source-map

       官方文档对这种方式的devtool并没有进行任何详细介绍,事实上这种方式适用于js代码被loader转换过的场景,比如被babel进行了转换,又比如源码是用typescript写的,后来经过loader转成了js代码,而我们又希望在运行的时候出现报错信息时能够对应回typescript代码像这种有loader对js进行转换的场景下,想要保证正确的source-map就需要使用到带有module的devtool了,因为除了cheap-module-source-map,还有很多别的方式也是有module的,只要是在官方文档中看到带有module的devtool都是具有这种特性

       下面就以babel为例,我们通过babel-loader对js进行转换,然后看看能否正确对应到转换前的代码首先安装如下依赖

pnpmi@babel/core@babel-preset-envbabel-loader

       @babel/core是babel的核心,所有功能都要在这个包的基础上运行

       @babel-preset-env让我们可以不需要考虑转换成什么版本的js,它会根据要适配的浏览器自动转换成能兼容相应浏览器的版本,这里我们使用它主要是能够将我们写的es6代码转成es5,从而让我们的源码和打包后的结果有差异,方便观察source-map是否生效

       babel-loader,用于和webpack搭配使用,转换js文件

       接下来配置loader

constHtmlWebpackPlugin=require('html-webpack-plugin');const{ CleanPlugin}=require('webpack');/***@type{ import('webpack').Configuration}*/module.exports={ mode:'development',devtool:'eval',//默认就是eval,因此development模式下不写devtool配置项也可以plugins:[newHtmlWebpackPlugin(),newCleanPlugin()],};0

       然后我们写一个具有es6特性的语法的函数

constHtmlWebpackPlugin=require('html-webpack-plugin');const{ CleanPlugin}=require('webpack');/***@type{ import('webpack').Configuration}*/module.exports={ mode:'development',devtool:'eval',//默认就是eval,因此development模式下不写devtool配置项也可以plugins:[newHtmlWebpackPlugin(),newCleanPlugin()],};1

       使用到了const、箭头函数,经过babel转换成es5后,代码的位置会和源码中不一样,那么在浏览器中如果仍然能够找到转换前的源码,则说明cheap-module-source-map生效了可以看到,在浏览器中确实能够看到转换前的源码,这就是cheap-module-source-map中module的作用,事实上官方文档中这么多的配置项我们不需要害怕,只需要知道每个关键字是什么意思,那么它们组合起来无非就是各种特性的叠加而已

3.7hidden-source-map

       也是一个见名知意的配置项,相比于source-map,就是将最后的//#sourceMappingURL=main.js.map这句注释删除了,这也就意味着source-map不会生效了,但是仍然会生成source-map文件的官方文档中给我们的建议是在只需要知道有错误出现时给我们在控制台输出出来的话就可以使用这种方式

3.8nosources-source-map

       这种方式能够在出现错误的时候告诉我们是源码中哪个文件第几行出错了,但是不会在浏览器中给我们生成源码

总结

       了解完以上这几个devtool配置项,就足够了,官网的个配置项就是根据eval、hidden、inline、cheap、module、nosources这几个关键字组合出来的

       但是组合也是有规则的,官方文档中给出的规则如下:

       [inline-|hidden-|eval-][nosources-][cheap-[module-]]source-map

原文:/post/

AMD的ROCM平台是什么?

       揭开AMD ROCm神秘面纱:高性能GPU计算平台的全面解析

       AMD ROCm,这个名字背后隐藏着一个强大的开源GPU计算生态系统。它不仅仅是一个堆栈,而是一系列精心设计的组件,旨在为高性能计算(HPC)、人工智能(AI)和科学计算等领域提供卓越性能和跨平台的灵活性。由Open Source Software(OSS)驱动,ROCm包含驱动程序、开发工具和API,如OpenMP和OpenCL,以及集成的机器学习框架,如PyTorch和TensorFlow。核心组件包括驱动、编译器、运行时库和工具集,支持AMD GPU、APU和多架构处理器,目标是打造一个高性能且可移植的GPU计算平台,与NVIDIA的CUDA相媲美。

       ROCm项目的基石是AMD Radeon Open Computing,类似于CUDA,通过ROCm系列项目和HSA(异构系统架构)实现。AMD与众多伙伴合作,利用GCN(AMD GPU架构)等技术,构建了一个兼容且高效的runtime和架构API。与CUDA相比,ROCm利用HIP在多个平台上部署便携式应用,如A卡用HIP或OpenCL,而N卡则使用CUDA。此外,ROCm的软件栈中内置了rocFFT、rocBLAS、rocRAND和rocSPARSE等加速库,进一步提升计算效率。

       要使用ROCm,开发者可以借助标准Linux编译器(如GCC、ICC、CLANG),以C或C++编程,主要依赖hip_runtime.h,它包含了hip_runtime_api.h和hipLaunchKernelGGL的核心内容。尽管hip_runtime.h支持C++,但公开函数相对有限。特别地,AMD和NVIDIA的实现细节分别存储在amd_detail/**和nvidia_detail/**中,直接使用需谨慎。hipcc作为编译器驱动,取代CUDA的nvcc,而hipconfig则帮助查看配置信息。使用ROCm源码时,需设置特定的分支(如ROCM-5.6.x),并安装对应的驱动和预构建包,以下是关键步骤:

       1. 设置仓库分支(如ROCM-5.6.x)和环境变量ROCM_PATH(默认在/opt/rocm)。

       2. 克隆必要的GitHub仓库,如HIP、HIPCC和clr。

       3. 配置环境变量指向仓库目录,包括HIP、HSA、HIP_CLANG_PATH等。

       4. 构建HIPCC运行时,依赖HIP和ROCclr,可能需要指定特定平台选项。

       5. 对于HIPCLR,指定相关目录和安装选项,hip运行时默认安装在$PWD/install。

       从ROCM 5.6开始,clr库合并了ROCclr、HIPAMD和OpenCL,提供更为集成的体验。同时,AMDDeviceLibs和ROCm-CompilerSupport库的管理与构建细节需要遵循特定指南,CMake的使用和依赖设置也尤为重要。

       AMD的HSA架构使得开发者能直接利用GPU性能,HSA运行时API提供了错误处理、内存管理和高级调度等接口。AQL作为数据包标准,支持细粒度和粗粒度内存访问,程序员需深入理解HSA运行时手册以充分利用其功能。

       要编译HSA运行时,你需要ROCT-Thunk-Interface库,并可能需要加入特定用户组。ROCt库依赖于ROCk驱动,其入门指南提供了系统兼容性、内核和硬件支持信息。构建和安装ROCm包的过程包括使用cmake构建,然后进行安装和软件包打包。

       最后,ROCm生态系统的数学库如rocFFT、rocBLAS等,为高性能计算提供了强大的工具。这些库的详细信息和GitHub链接,为开发者提供了丰富的资源库,让性能优化触手可及。

       总之,AMD ROCm是一个强大的工具,为开发者提供了一站式GPU计算解决方案,无论是科研、AI还是游戏开发,都能从中受益。通过深入了解和利用这一平台,你可以解锁GPU计算的无限可能。

AMD 编译概述 & Fatbin 文件生成 & HIP Runtime API(启动 CUDA 核函数)

       AMD 平台的术语概览

       AMD GPU 计算生态基于 ROCm(Radeon Open Computing platform),ROCm 包括ROC 和 Radeon 等简称,ROC:Radeon 开放计算平台,Radeon 是 AMD GPU 产品的品牌名。ROCm 类似于 CUDA 于 NVIDIA GPU。ROCx 包含 ROCr - ROC Runtime,ROCk - ROC kernel driver, ROCt - ROC Thunk。

       HIP(Heterogeneous-Computing Interface for Portability)是一个旨在简化 CUDA 应用程序到便携式 C++ 代码转换的接口,支持 C 风格的 API 和 C++ 内核语言。

       HIP-Clang 是 AMDGPU 异构编译器,用于在 AMD 平台上编译 HIP 程序。

       HCC(Heterogeneous Compute Compiler)是面向异构设备的开源 C++ 编译器,基于 LLVM + CLANG,实现将并行编程程序转换为 AMD GCN ISA。

       在 ROCM v3.5 版本前,HCC 编译器被使用,之后引入了 HIP-Clang 编译器,HCC 编译器不再发展新特性,AMD 公司不再维护。

       “HIP化”工具,即 HIPify,能将 CUDA 代码转换为便携式 C++ 代码,自动执行大部分转换工作。

       ROCm 计算平台的编译流程包括使用 HIPify 工具转换 CUDA 源码到 HIP 源码,HIP 源码能够在 AMD 或 NVIDIA GPU 上运行。

       在 AMD ROCm 平台上,HIP 提供 HIP 运行时 API,实现与应用程序链接的对象库,包括流、事件和内存管理。在 NVIDIA CUDA 平台上,提供头文件,从 HIP 运行时 API 转换为 CUDA 运行时 API,提供内联函数以实现低开销。

       在 AMD ROCm 平台生成 Fat Binary 文件,使用 clang-offload-bundler 工具,将针对不同架构的多个 ELF 二进制文件合并成单个捆绑文件。

       clang-offload-bundler 工具在编译过程中对翻译单元进行多次编译,生成主机和设备代码对象,然后合并这些代码对象到单个捆绑文件中。

       HIP Runtime API 支持 CUDA <<<>>> 核函数语法,通过 hip-clang 编译选项选择 -fhip-new-launch-api,遇到 <<<>>> 时,调用一系列 API 来存储和处理核运行参数,最终通过 hipLaunchKernel API 运行核函数。

       在编译过程中,使用 hip-clang 时,会调用 API 来存储核运行参数,然后通过桩函数调用,再通过 hipLaunchKernel API 实现核函数的运行。

       API 包括用于初始化和注册函数的 API,如 __hipRegisterFatBinary 和 __hipRegisterFunction,保证 fatbin 文件只加载一次。

推荐资讯
英國小鎮驚傳17歲少年持刀闖學校活動 2童死亡、11傷

英國小鎮驚傳17歲少年持刀闖學校活動 2童死亡、11傷

南京市建邺区市场监管局:努力做好校园食品安全“守护人”

南京市建邺区市场监管局:努力做好校园食品安全“守护人”

html5 登录 源码下载_html5登录界面源代码

html5 登录 源码下载_html5登录界面源代码

九转序列公式源码_九转序列的原理

九转序列公式源码_九转序列的原理

广西桂林举办珠宝检测开放日活动

广西桂林举办珠宝检测开放日活动

qq聊天界面源码_qq聊天界面源码是什么

qq聊天界面源码_qq聊天界面源码是什么

copyright © 2016 powered by 皮皮网   sitemap