皮皮网
皮皮网

【没有字体源码】【指标变色公式源码大全】【it服务管理系统 源码】atomic源码分析

来源:怎么打开asp源码 发表时间:2024-12-22 16:56:16

1.Go并发编程之原子操作sync/atomic
2.Redis源码阅读(1)——zmalloc
3.太强了!源码阿里老哥分享的分析JDK源码学习指南,含8大核心内容讲解
4.C++ atomic详解
5.nginx源码分析--master和worker进程模型
6.为什么会有 AtomicReference ?

atomic源码分析

Go并发编程之原子操作sync/atomic

       Go语言的源码并发编程中,sync/atomic包提供了底层的分析原子内存操作,用于处理并发环境中的源码数据同步和冲突避免。这个包利用了CPU的分析没有字体源码原子操作指令,确保在并发情况下,源码对变量的分析操作是线程安全的。然而,源码官方建议仅在必要且确实涉及底层操作时使用,分析如避免使用channel或sync包中的源码锁的场景。

       sync/atomic包的分析核心是5种基本数据类型的原子操作:add(只支持int、int、源码uint、分析uint和uintptr),源码以及一个扩展的Value类型,后者在1.4版本后支持Load、Store、CompareAndSwap和Swap方法,可用于操作任意类型的数据。Value类型尤其重要,因为它扩展了原子操作的适用范围。

       具体来说,指标变色公式源码大全swap操作(如SwapInt)用于原子地替换内存中的值,compare-and-swap(CAS)则检查并替换值,如果当前值与预期值一致。add操作(如AddInt)则进行加法操作并返回新值,而load、store操作分别用于读取和写入值,如LoadInt和StoreInt。

       在实际使用时,例如对map的并发读写,可以通过Value类型避免加锁。sync/atomic的相关源码和示例可在GitHub的教程[1]和作者的个人网站[2]中找到。至于进一步学习,可以关注公众号coding进阶获取更多资源,或者在知乎[3]上查找无忌的资料。

       

参考资料:

       [1] Go语言初级、中级和高级教程: github.com/jincheng9/go...

       [2] Jincheng's Blog: jincheng9.github.io/

       [3] 无忌: zhihu.com/people/thucuh...

Redis源码阅读(1)——zmalloc

       zmalloc是一个简化内存分配的库,包含以下API函数:

       zmalloc

       zcalloc

       zrealloc

       zfree

       zstrdup

       zmalloc_used_memory

       zmalloc_set_oom_handler

       zmalloc_get_rss

       zmalloc_get_allocator_info

       zmalloc_get_private_dirty

       zmalloc_get_smap_bytes_by_field

       zmalloc_get_memory_size

       zlibc_free

       其中,zmalloc用于分配内存,zcalloc在分配内存的同时初始化为0,zrealloc用于重新分配内存,zfree用于释放内存,zstrdup用于复制字符串并分配内存,it服务管理系统 源码zmalloc_used_memory用于获取已分配内存的大小,zmalloc_set_oom_handler用于设置内存溢出处理器,zmalloc_get_rss用于获取当前进程的内存使用量,zmalloc_get_allocator_info用于获取分配器信息,zmalloc_get_private_dirty用于获取私有脏数据,zmalloc_get_smap_bytes_by_field用于获取指定字段的内存使用量,zmalloc_get_memory_size用于获取内存大小,zlibc_free用于释放内存。

       在zmalloc中,宏函数update_zmalloc_stat_alloc用于更新used_memory的值。这个宏函数中的if语句用于补齐分配的内存字节数到sizeof(long),但是我不太理解5.0源码中为什么atomicIncr使用的是__n而不是直接对_n进行操作。测试发现,used_memory的值并未对齐到8,那么if语句的存在意义何在呢?

       同样地,update_zmalloc_stat_free宏函数用于更新已释放内存的统计信息。与update_zmalloc_stat_alloc相比,虽然malloc_usable_size已经返回精确的字节数,但update_zmalloc_stat_alloc为何不直接使用atomicIncr更新used_memory呢?在Unstable分支中,已有开发者对此进行了优化。

太强了!阿里老哥分享的千年控件源码JDK源码学习指南,含8大核心内容讲解

       Java开发中,JDK源码的重要性不言而喻。作为Java运行环境的基石,JDK涵盖了Java的全部运行环境和开发工具,没有它,程序编译都无从谈起。为此,本文将分享一份来自阿里的资深程序员整理的JDK源码学习指南。

       这份指南详尽介绍了JDK源码的多个核心内容,包括多线程基础、Atomic类、Lock与Condition接口、同步工具类、并发容器、线程池与Future、ForkJoinPool分治算法、异步编程工具CompletableFuture等。需要这份资料的朋友,请点击此处获取完整版。

       以下是学习指南的具体章节:

       第1章 多线程基础

       第2章 Atomic类

       第3章 Lock与Condition

       第4章 同步工具类

       第5章 并发容器

       第6章 线程池与Future

       第7章 ForkJoinPool

       第8章 CompletableFuture

       以上就是这份JDK源码学习笔记的概述,感兴趣的朋友可以点击此处获取完整版资料。

C++ atomic详解

       C++中的香港瓶装溯源码燕窝原子操作是为了确保在多核环境下,对共享数据的读写操作不会出现竞态条件,保证数据的一致性。理解原子操作的底层实现至关重要,但网上资源往往缺乏详细讲解编译器如何实现的细节。本文旨在填补这一空白,深入解析原子操作的技术和实现方法,主要参考了《深入理解 linux内核》和gcc源码。

       原子操作通常依赖于某些具有读-修改-写性质的汇编指令,如x平台上的xadd。这些指令确保操作以单个指令执行,避免其他CPU的干扰,从而创建了原子操作。然而,即使有了原子指令,创建临界区和优化内存访问仍需额外的内存屏障和优化屏障机制。

       gcc编译器内部实现了多种原子操作,例如__atomic_load_n和__atomic_fetch_op_N,这些操作在libatomic库中提供了一致的接口。在libatomic_i.h中定义了宏,如__atomic_load,根据需要链接到相应的c文件,如load_n文件。底层实现可能有多种,如基于内存屏障的__atomic_load提供了不同实现。

       在优化和内存屏障方面,编译器可能会重新排列指令以提高执行效率,但处理同步时必须保持指令的执行顺序,避免指令重排序导致的问题。内存屏障原语确保操作的顺序性,而优化屏障则防止编译器混淆操作前后的内容。

       总的来说,理解和掌握C++的原子操作及其底层实现,对于编写并发程序至关重要,尤其是在处理多核环境下的数据同步和一致性保障。

nginx源码分析--master和worker进程模型

       一、Nginx整体架构

       正常执行中的nginx会有多个进程,其中最基本的是master process(主进程)和worker process(工作进程),还可能包括cache相关进程。

       二、核心进程模型

       启动nginx的主进程将充当监控进程,主进程通过fork()产生的子进程则充当工作进程。

       Nginx也支持单进程模型,此时主进程即是工作进程,不包含监控进程。

       核心进程模型框图如下:

       master进程

       监控进程作为整个进程组与用户的交互接口,负责监护进程,不处理网络事件,不负责业务执行,仅通过管理worker进程实现重启服务、平滑升级、更换日志文件、配置文件实时生效等功能。

       master进程通过sigsuspend()函数调用大部分时间处于挂起状态,直到接收到信号。

       master进程通过检查7个标志位来决定ngx_master_process_cycle方法的运行:

       sig_atomic_t ngx_reap;

       sig_atomic_t ngx_terminate;

       sig_atomic_t ngx_quit;

       sig_atomic_t ngx_reconfigure;

       sig_atomic_t ngx_reopen;

       sig_atomic_t ngx_change_binary;

       sig_atomic_t ngx_noaccept;

       进程中接收到的信号对Nginx框架的意义:

       还有一个标志位:ngx_restart,仅在master工作流程中作为标志位使用,与信号无关。

       核心代码(ngx_process_cycle.c):

       ngx_start_worker_processes函数:

       worker进程

       worker进程主要负责具体任务逻辑,主要关注与客户端或后端真实服务器之间的数据可读/可写等I/O交互事件,因此工作进程的阻塞点在select()、epoll_wait()等I/O多路复用函数调用处,等待数据可读/写事件。也可能被新收到的进程信号中断。

       master进程如何通知worker进程进行某些工作?采用的是信号。

       当收到信号时,信号处理函数ngx_signal_handler()会执行。

       对于worker进程的工作方法ngx_worker_process_cycle,它主要关注4个全局标志位:

       sig_atomic_t ngx_terminate;//强制关闭进程

       sig_atomic_t ngx_quit;//优雅地关闭进程(有唯一一段代码会设置它,就是接受到QUIT信号。ngx_quit只有在首次设置为1时,才会将ngx_exiting置为1)

       ngx_uint_t ngx_exiting;//退出进程标志位

       sig_atomic_t ngx_reopen;//重新打开所有文件

       其中ngx_terminate、ngx_quit、ngx_reopen都将由ngx_signal_handler根据接收到的信号来设置。ngx_exiting标志位仅由ngx_worker_cycle方法在退出时作为标志位使用。

       核心代码(ngx_process_cycle.c):

为什么会有 AtomicReference ?

       原子性工具类AtomicReference是Java.util.concurrent.atomic包下的一个类,它能够确保在修改对象引用时的线程安全性。例如在处理账户问题时,多个线程可能同时向同一个账户存入款项,使用AtomicReference可以避免这种情况导致的数据不一致问题。

       在使用AtomicReference时,我们需要了解它的基本使用方法。首先声明一个全局变量BankCard,并使用volatile关键字对其进行修饰,以确保在对其引用进行变化后对其他线程可见。然后,我们可以通过AtomicReference来封装BankCard的引用,使用get()方法获得原子性的引用,接着使用CAS(Compare and Swap)乐观锁进行非阻塞更新。这样可以确保在修改引用时的线程安全性。

       AtomicReference源码解析中,我们发现它主要依赖于sun.misc.Unsafe类的native方法来保证操作的原子性。Unsafe的objectFieldOffset方法可以获取成员属性在内存中的地址相对于对象内存地址的偏移量,这个偏移量就是valueOffset,方便后续通过内存地址直接进行操作。value是AtomicReference的实际值,由于使用了volatile,这个值实际上就是内存值。

       AtomicReference与AtomicInteger非常相似,它们内部都使用了Unsafe、value、valueOffset等属性。get()和set()方法分别可以原子性地读取和设置AtomicReference中的数据。lazySet方法则在没有内存屏障的情况下读写变量,以减少开销。getAndSet方法则调用unsafe中的getAndSetObject方法,涉及getObjectVolatile和compareAndSwapObject方法,它们在do...while循环中,每次获取最新对象引用的值,如果使用CAS成功交换两个对象,则直接返回更新前的内存值,即旧值。

       AtomicReference的关键方法CAS(Compare and Swap)在compareAndSet方法中实现,与AtomicInteger不同的是,AtomicReference调用compareAndSwapObject方法。这段代码底层使用了Atomic:cmpxchg方法进行CAS交换,并将旧值进行decode返回。

       weakCompareAndSet方法在JDK1.8中与compareAndSet方法完全相同,但实际上这是JDK源码设计的巧妙之处,用于处理特定场景下的线程安全问题。

       在使用AtomicReference时,我们需要充分了解它的特性和源码实现,以确保在多线程环境下正确地管理和更新对象引用。本文主要介绍了AtomicReference的出现背景、使用场景以及源码分析,涵盖了网络上关于AtomicReference的大部分内容。

相关栏目:时尚