皮皮网

【libc 源码下载】【变脸指标源码设置】【开源source源码修改】durid源码

时间:2024-12-22 21:41:38 分类:娱乐 来源:源码电影盒子

1.duridԴ??
2.Spring Boot (三) 整合 Druid 连接池
3.源码详解系列(四) ------ DBCP2的使用和分析(包括JNDI和JTA支持)已停更
4.Druid之ExceptionSorter源码分析
5.简直了!通过源码告诉你阿里的数据库连接池Druid为啥如此牛逼
6.druid源码学习笔记9_testOnBorrow&testOnReturn&testWhileIdl

durid源码

duridԴ??

       面对源码安全与数据库信息保护的需求,数据库密码加密显得尤为重要。一旦源码泄漏,数据库密钥可能随之暴露,威胁数据安全。libc 源码下载为解决这个问题,我们可以借助阿里巴巴的Druid工具轻松加密。

       Druid是一款强大的Java数据库连接池,它不仅提供了监控和扩展功能,还内置了数据库密码加密特性。通过使用Druid,我们可以简单地保护数据库密码,即使源码被获取,密码也保持加密状态。

       加密过程分为几个步骤:首先,项目在未加密前的交互是直接使用明文密码;而使用Druid后,会通过ConfigTools类生成公钥和密文,将明文密码转换为密文。然后,将公钥和密文添加到项目配置文件中,确保数据库连接时使用加密后的密码。

       然而,需要注意的是,直接在配置文件中存储公钥和密文并不安全,因为这相当于公开了钥匙。正确的做法是在生产环境中动态设置公钥,避免密码还原。例如,开发环境可通过启动参数传递公钥,生产环境则通过jar包启动时提供。变脸指标源码设置

       总的来说,Druid的加密机制简化了这个过程,无需编写额外代码,仅需添加依赖、生成密文并配置,项目运行时Druid会自动处理解密,实现了MySQL密码的加密和自动解码。

Spring Boot (三) 整合 Druid 连接池

       Druid为何在Java领域中脱颖而出?它作为数据库连接池,以其强大监控与扩展功能而著称。深入探索其特性,能够极大地优化数据库连接管理,提升应用性能。

       官方文档提供详细指南: <a href="github.com/alibaba/drui...

       整合Druid连接池于Spring Boot 2.1.8.RELEASE + MyBatis Plus 2.2.0中,让您的应用更上一层楼。以下步骤引导您完成整合过程:

       1、在pom.xml文件中添加Druid依赖。确保与项目需求兼容。

       2、在application.yml配置文件中设置Druid连接池参数,包括但不限于数据源URL、用户名、密码等。

       3、创建Druid核心配置类,自定义连接池属性,如最大连接数、验证间隔等。

       4、访问.0.0.1:/druid/页面,即可查看监控信息。开源source源码修改直观的数据展示帮助您实时了解数据库连接状态,提升运维效率。

       实现案例:您可以参考以下源码,快速部署并运行。

       示例项目地址: <a href="gitee.com/zhengqingya/j...

       通过以上步骤,您不仅能够成功整合Druid连接池,还能享受到其带来的高效数据库管理体验。

源码详解系列(四) ------ DBCP2的使用和分析(包括JNDI和JTA支持)已停更

       DBCP是一个用于创建和管理数据库连接的工具,通过连接池复用连接以减少资源消耗。它具备连接数控制、连接有效性检测、连接泄露控制和缓存语句等功能。Tomcat内置连接池、Spring团队推荐使用DBCP,阿里巴巴的druid也是基于DBCP开发的。

       DBCP支持通过JNDI获取数据源,并且可以获取JTA或XA事务中的连接对象,用于两阶段提交(2PC)的事务处理。本篇文章将通过例子来解释如何使用DBCP。

       以下是文章的详细内容:

       使用例子需求

       本例将展示如何使用DBCP连接池获取连接对象,并进行基本的增删改查操作。

       工程环境

       JDK:1.8.0_

       maven:3.6.1

       IDE:eclipse 4.

       mysql-connector-java:8.0.

       mysql:5.7.

       DBCP:2.6.0

       主要步骤

       创建Maven项目,打包方式为war(war也可以是jar,这里选择war是为了测试JNDI功能)。

       引入DBCP相关依赖。

       在resources目录下创建dbcp.properties文件,配置数据库连接参数及连接池基本参数。

       编写JDBCUtils类,实现初始化连接池、获取连接、loveme国际交友源码管理事务和资源释放等功能。

       创建测试类,实现基本的增删改查操作。

       配置文件详解

       dbcp.properties文件包含数据库连接参数和连接池基本参数,如数据库URL、用户名、密码、连接池大小等。其中,数据库URL后面添加了参数以避免乱码和时区问题。建议根据项目需求调整参数设置。

       基本连接属性

       数据库URL

       用户名

       密码

       连接池大小

       缓存语句(在MySQL下建议关闭)

       连接检查参数(建议开启testWhileIdle,避免性能影响)

       事务相关参数(通常使用默认设置)

       连接泄漏回收参数

       其他参数(较少使用)

       源码分析

       DBCP主要涉及以下几个类:

       BasicDataSource:提供基本的数据库操作数据源。

       BasicManagedDataSource:BasicDataSource的子类,用于创建支持XA事务或JTA事务的连接。

       PoolingDataSource:BasicDataSource中实际调用的数据源,用于管理连接。

       ManagedDataSource:PoolingDataSource的子类,用于支持XA事务或JTA事务的连接。

       使用DBCP连接池创建连接时,首先创建BasicDataSource对象,初始化配置参数。然后从连接池中获取连接。连接获取过程涉及到数据源和连接池的创建,连接对象的包装和回收。

       通过JNDI获取数据源对象需求

       使用JNDI获取DBCP数据源对象,以PerUserPoolDataSource和SharedPoolDataSource为例。为了在tomcat容器中测试,需要配置JNDI上下文。

       引入依赖

       引入JNDI相关的奶粉源码防伪原理依赖。

       编写context.xml文件,配置JNDI上下文。

       在web.xml中配置资源引用,将JNDI对象与web应用绑定。

       测试结果

       打包项目并部署到tomcat上运行,通过访问指定的jsp页面,验证JNDI获取数据源对象的正确性。

       使用DBCP测试两阶段提交

       介绍如何使用DBCP实现JTA事务的两阶段提交(2PC)。使用DBCP的BasicManagedDataSource类支持事务处理。通过测试代码验证了2PC的正确性。

       以上内容涵盖了DBCP的使用、配置、源码分析、JNDI集成以及两阶段提交的实现,为开发者提供了全面的参考。

Druid之ExceptionSorter源码分析

       ExceptionSorter机制在Druid连接池中扮演着关键角色,用于识别和剔除数据库操作过程中的"不可用连接"。当网络断开或数据库服务器崩溃时,连接池会遇到大量"不可用连接",而ExceptionSorter机制正是通过异常类型、代码、原因和消息来判断这些连接是否可用,从而保证连接池的稳定性和高效性。

       Druid连接池内置了多种ExceptionSorter,其设计旨在确保在数据库重启或网络中断后,连接池能够自动恢复工作。这使得ExceptionSorter成为判断连接池稳定性的重要指标。

       初始化ExceptionSorter的代码位于DruidAbstractDataSource类的initExceptionSorter方法中。所有具体的ExceptionSorter实现了ExceptionSorter接口,该接口包含两个方法。这些方法的实现决定了ExceptionSorter如何根据特定的异常信息进行连接的处理。

       在Druid中的使用场景主要是在数据库操作异常时,调用DruidPooledConnection类的handleException方法。当数据库操作出现异常,处理逻辑首先会判断该异常是否为致命性错误,即是否满足isExceptionFatal方法的返回条件。

       以MySQL为例,isExceptionFatal方法的实现逻辑通常会根据异常的具体类型和错误代码来判断。当判定为致命性错误时,Druid会调用discardConnection方法关闭当前连接。这一过程有效地剔除了"不可用连接",确保了连接池的健康状态。

       综上所述,Druid通过ExceptionSorter机制实现了对"不可用连接"的高效识别与剔除,从而确保了数据库操作的稳定性和连接池的高效管理。关键在于isExceptionFatal方法的判断逻辑和discardConnection方法的执行,二者共同作用,使得连接池能够在异常情况下自动恢复,提供持续、稳定的数据库服务。

简直了!通过源码告诉你阿里的数据库连接池Druid为啥如此牛逼

       druid数据库连接池的强大之处在于其高效管理和丰富的功能。它通过复用连接减少资源消耗,具备连接数控制、可靠性测试、泄漏控制和缓存语句等标准特性,同时还扩展了监控统计和SQL注入防御等功能。

       以入门需求为例,创建Maven项目,引入必要的依赖如JDK、maven、IDE,以及mysql-connector-java和druid。在项目中,通过JDBCUtil初始化连接池并获取连接,进行简单的增删改查操作。在web应用中,可以使用JNDI获取DruidDataSource,如在tomcat 9.0.容器下运行。

       druid的监控统计功能强大,如StatFilter支持合并SQL、慢SQL记录和多个数据源监控数据的统一。StatViewServlet用于展示监控信息,配置WebStatFilter则能收集web-jdbc关联监控数据。同时,WallFilter用于防御SQL注入,提供定制化的参数配置选项。

       druid的源码分析显示,它在连接池管理、配置方式的灵活性以及异常处理等方面展现出独特之处。尽管配置方式多样,但推荐优先使用最常见的方式,如properties文件。然而,过多的配置选项和缺乏统一的管理方式是其设计上的一个挑战。

       总而言之,druid凭借其强大的功能和灵活的配置,为数据库连接池管理提供了高效且实用的解决方案,是阿里巴巴数据库连接池中的佼佼者。

druid源码学习笔记9_testOnBorrow&testOnReturn&testWhileIdl

       druid源码中,关于testOnBorrow、testWhileIdle和testOnReturn的属性配置值得重点关注。在1.2.9版本后,这些属性的默认值与早期wiki中的记录有所不同。testOnBorrow的默认值从true变为false,而testWhileIdle的默认值则从false变为true。这表明代码在年后可能进行了更新,但wiki尚未同步更新。

       testOnBorrow主要在getConnectionDirect方法中起作用,当设置为true时,获取连接后会执行validationQuery检查连接是否可用。如果连接不可用,将重新获取。而testWhileIdle则在连接空闲时间达到timeBetweenEvictionRunsMillis时执行验证,同样用于检查连接状态。

       testWhileIdle与testOnBorrow互斥,如果两者都为true,仅执行testOnBorrow。计算空闲时间的规则涉及checkExecuteTime、lastKeepTimeMillis和当前时间的比较。

       testOnReturn属性在DruidPooledConnection#close()方法,即归还连接时被调用。当设置为true时,回收连接后会检查其状态,如连接未关闭,会执行validationQuery。如果连接不可用,会关闭并计数,否则继续归还操作。

       总结如下:

       testOnReturn在连接归还时检查,默认为false。

       testOnBorrow和testWhileIdle在连接借用时检查,早期testOnBorrow为true,testWhileIdle为false,但新版本可能出于性能考虑进行了调整。

弹性数据库连接池探活策略调研 (二)——Druid | 京东云技术团队

       在上篇文章中,我们探讨了 HikariCP 连接池的探活策略,现在我们将转向另一个流行的数据库连接池——Druid。京东云技术团队将为您揭示如何在使用Druid时实现最佳的弹性数据库连接池探活策略,以及其不同版本间的参数调整与实现逻辑。

       Druid的探活机制复杂且版本间差异明显,配置参数众多。核心的探活逻辑主要集中在两个源码函数中。要确保探活策略生效,需理解以下几个关键参数:testOnBorrow、testWhileIdle和timeBetweenEvictionRunsMillis。在高并发场景下,推荐配置testWhileIdle以减少性能消耗。

       Druid的getConnectionDirect函数在取连接时会进行探活检测,如果testOnBorrow为true,每次都会检查连接有效性。当testOnBorrow为false且testWhileIdle为true时,会根据timeBetweenEvictionRunsMillis来判断连接是否失效,若超过设定时间,则进行探活。在版本1.1.及以上,保持连接功能(keepAlive)在minEvictableIdleTimeMillis设置小于分钟时,有助于高效探活并防止网关连接关闭。

       在低版本中,如1.0.9,探活主要依赖于testOnBorrow或testWhileIdle,不支持keepAlive。而在1.1.和1.1.9版本中,shrink方法的逻辑有所调整,引入了keepAliveBetweenTimeMillis参数,增加了对keepAlive的控制。1.1.版本则进一步优化了探活过程,不仅关闭无效连接,还会补充连接以维持最小连接数。

       总结来说,Druid的探活策略在不同版本中需灵活配置,建议在高并发场景下使用1.1.或更高版本,配置testWhileIdle以提高性能,同时根据需求选择是否启用testOnBorrow或使用keepAlive来保证连接的可用性。对于使用Druid连接池的线上应用,推荐依据实际需求选择合适的版本和参数设置。

       以上内容由京东零售王雷鑫提供,出自京东云开发者社区,转载请注明原作者和来源。

copyright © 2016 powered by 皮皮网   sitemap