皮皮网

【手机门禁源码】【idc销售系统源码】【文件传输源码】coreconstants源码

2024-12-23 02:03:25 来源:又一城源码

1.elasticsearch wildcard 慢查询原因分析(深入到源码!!!)

coreconstants源码

elasticsearch wildcard 慢查询原因分析(深入到源码!!!)

       本文深入剖析 Elasticsearch 中 wildcards 查询导致的性能问题及其解决之道,结合源码解析,揭示其背后的机制。阅读本文后,手机门禁源码您将深入了解 Elasticsearch 的查询过程、查询性能瓶颈以及如何利用 Elasticsearch profile API 进行性能分析。

       首先,理解 Elasticsearch 的查询流程分为两个阶段:使用 Elasticsearch 对卢瑟库(Lucece)进行查询,以及卢瑟库本身进行查询。卢瑟库只能单机存储,因此,idc销售系统源码查询过程主要关注如何高效地在卢瑟库中查找文档。

       在卢瑟库中,查询过程涉及以下关键步骤:重写(rewrite)查询类型、创建权重对象、构建 bulk scorer 对象以及进行打分。文件传输源码重写阶段将复杂查询转换为更底层的查询类型,如 MultiTermQueryConstantScoreWrapper。权重对象用于计算文档的权重和构建得分对象,以确定文档的排序。打分阶段对匹配的留言本源码文档进行批量化打分,然后通过收集器对象汇总结果。

       理解卢瑟库查询过程的关键在于了解其查询机制,尤其是如何筛选匹配文档。卢瑟库的查询过程包括创建 bulk scorer 对象,以及在 scorer 对象中遍历匹配的淘客程序源码文档。PhraseQuery 和 WildcardQuery 类型的查询分别在不同的阶段进行文档筛选。WildcardQuery 的主要耗时发生在构建 scorer 阶段,由于其需要遍历字段中的所有 term 并与有限状态机进行匹配,此过程较为耗时且对 CPU 资源消耗较大。

       在性能分析方面,Elasticsearch 提供了 profile API,允许在查询时收集分析结果。通过装饰器模式,profile API 在关键方法前后添加了埋点,以统计耗时时间。分析 profile 返回的结果,可以揭示查询在不同阶段的性能瓶颈,例如在构建 scorer 阶段的耗时。了解这些信息对于优化查询性能和资源利用至关重要。

       综上所述,本文旨在深入探究 Elasticsearch wildcards 查询的性能问题,揭示其工作原理以及如何通过分析性能数据进行优化。通过本文的讲解,您将能够更好地理解 Elasticsearch 的查询过程、识别性能瓶颈,并采取有效措施提升系统性能。