皮皮网

【itpv源码】【捕鱼达人整套源码】【金色财经源码app】AutoGPT 源码解析

2024-12-23 01:51:58 来源:什么是源码销售

1.K&R语法(autoGPT)
2.自动 GPT 教程:如何设置自动 GPT
3.AUTOGEN | 上手与源码分析
4.GPT-Engineer一夜爆火!码解一个提示生成整个代码库,码解GitHub狂飙19k星

AutoGPT 源码解析

K&R语法(autoGPT)

       读源码时,码解发现了一种简洁明了的码解函数定义方式,对比常规方式,码解它更便于理解与注释。码解itpv源码于是码解,autoGPT协助我编写了一些示例,码解以展示这种被称作K&R语法的码解独特之处。

       K&R语法,码解源自Brian Kernighan和Dennis 码解Ritchie所著的《C编程语言》第一版,以简洁性著称。码解与现代C语言语法相比,码解其主要特点在于其极度简化。码解以下为K&R语法的码解关键特性:

       - 缺乏功能原型

       - 无void关键字

       - 没有const关键字

       - 无内联函数

       - 不支持//注释

       尽管K&R语法在功能上相对简陋,但它依然在一些遗留代码库中被使用,主要出于历史和教学的目的。理解K&R语法有助于深入探索C语言的早期发展。

       接下来,通过示例代码,我们来具体了解K&R语法的应用:

       注:main和add是两个独立的实例

自动 GPT 教程:如何设置自动 GPT

       探索Auto-GPT与生成模型的魅力,掌握尖端技术,为专业领域带来革新。

       Auto-GPT是一种功能强大的人工智能模型,专门用于文本生成、翻译等任务。捕鱼达人整套源码它基于生成预训练Transformer(GPT)技术,是一种强大的生成模型。生成模型从现有数据中学习模式,并根据这些模式生成新数据。想象这些模型为人工智能领域的艺术大师,创造出前所未见的杰作。

       Auto-GPT与生成模型是绝佳搭档,协同工作展示人工智能的威力,帮助解决各类问题。设置Auto-GPT与配置生成模型一样,都需要细心安排。首先获取预先训练的GPT模型,可从GitHub等流行存储库获取。接下来,通过微调参数来适应具体任务。这就是Auto-GPT与生成模型的联合效应。

       设置Auto-GPT就像拼图游戏,需要正确组装。获取GPT模型后,调整参数以适应任务。教程将指导你设置和使用Auto-GPT。

       在计算机中设置Auto-GPT需要最新Python版本。从GitHub仓库获取Auto-GPT源代码并克隆。配置中涉及的关键部分包括使用个人的API密钥访问GPT和设置Pinecone内存存储。

       API密钥为与OpenAI系统的金色财经源码app交互提供身份验证,确保使用合法访问。设置Pinecone内存则允许模型检索相关信息,增强任务执行能力。这些配置在实现Auto-GPT功能方面至关重要。

       创建新的OpenAI账户获取API密钥,这将解锁Auto-GPT与其他服务的连接。对于Pinecone,设置免费账户并获取API密钥。正确配置上述密钥后,使用命令进行初始化并运行代理。

       代理运行后,用户需为它赋予角色与目标,最终得到专属的智能助手。Auto-GPT的惊喜远不止于此。AI可实现与自然语言交互,甚至生成图像,进一步增强其应用价值。

       设置ElevenLabs账户访问语音合成功能,替换API密钥并将选择的语音ID与账号关联。这将使Auto-GPT能够说话,增加交互性与用户体验。同时,通过调整IMAGE_PROVIDER和IMAGE_SIZE参数,启用图像生成功能,实现实质性的雷达智能小车源码应用。

       综上,设置Auto-GPT与生成模型需要一系列步骤,包括获取模型、微调参数、集成API密钥和内存存储。这些配置为智能助手提供了强大的功能集,从语言生成到图像创建,满足多样化需求。Auto-GPT与生成模型的结合,揭示了人工智能在业务和应用层面上的巨大潜力。

AUTOGEN | 上手与源码分析

       AUTOGEN是一个开源平台,主要功能是创建和管理自动化对话代理(agent)。这些代理能执行多种任务,包括回答问题、执行函数,甚至与其它代理进行交互。本文将介绍AUTOGEN中的关键组件,即Conversation Agent,并简单分析其多代理功能的源码实现。

       根据官网文档和参考代码,AUTOGEN利用OpenAI提供的服务来访问语言模型(Logic Unit)。任何部署了OpenAI兼容API的语言模型都可以无缝集成到AUTOGEN中。利用OpenAI的Tool功能,AUTOGEN能够调用函数,而不是cnn目标检测 源码使用自定义提示来引导逻辑模型选择工具。在请求体中提供候选函数信息,OpenAI API将从中选择最有可能满足用户需求的函数。每个agent都可使用send和receive方法与其他agent进行通信。

       在Autogen中,每个agent由Abilities & Prior Knowledge、Action & Stimuli、Goals/Preference、Past Experience等部分组成。语言模型(逻辑单元)通过调用OpenAI服务来实现,利用OpenAI提供的Tool功能调用函数。每个agent都维护自己的历史记录,以List[Message]的形式保存,包含对话信息和执行函数的结果等。

       Conversable Agent是Autogen的基本智能体类型,其他如AssistantAgent或UserProxyAgent都是基于此实现。在初始化时,通过配置列表来初始化OpenAI对象。generate_reply是核心功能,根据接收到的消息和配置,通过注册的处理函数和回复生成函数产生回复。此过程包括消息预处理、历史消息整理和回复生成。通过定制化钩子处理特定逻辑,考虑到调用工具、对话、参考历史经验等功能,generate_reply的大致运行流程如下:首先处理最后接收的消息,然后整理所有消息进行回复生成。

       Autogen将多种不同功能的agent整合到Conversable Agent中。generate_reply时,会根据消息判断是否需要终止对话或人工介入。回复逻辑包括关联或不关联函数的情况。通过代码执行器,代理安全执行GPT生成的代码,AutoGPT自带了Docker、Jupyter和本地三种代码执行器。多Agent对话通过initiate_chat函数启动,使用send和receive函数确保信息正确传递。这种设计允许灵活组合多个ConversableAgent,实现自定义的Agent系统。

       Autogen还提供GroupChat功能,允许多个Agent进行自由讨论或固定流程的工作流。开源社区的autogen.agentchat.contrib部分提供了许多自动化对话系统的贡献。此外,官方notebook中讨论了Agent优化器,允许自定义输出,将对话信息输出到前端UI界面。

       总之,Autogen作为Agent搭建工具,提供了基础功能,允许创建和管理自动化对话代理。其设计将执行工具与逻辑模型整合,简化了多代理对话和多功能任务的实现。通过源码分析,可以看到其灵活的架构和丰富的功能实现,为开发者提供了构建复杂对话系统的基础。

GPT-Engineer一夜爆火!一个提示生成整个代码库,GitHub狂飙k星

       AI代码生成明星项目GPT-Engineer一夜爆火,短短几天狂揽k星。AutoGPT之后,诞生了又一个明星项目。这是一个根据指示生成代码的AI工具,你只需要「动动嘴」,就能直接构建整个代码库。项目地址:github.com/AntonOsika/g...。

       GPT-Engineer的特色包括:一个提示就能生成一个代码库,提出需要澄清的问题,生成技术规范,编写所有必要代码,易于添加自己的推理步骤、修改和实验,项目开源,分分钟让你完成编码。这预示着未来软件创造将是一个人机共话的时代。

       项目主要作者Anton Osika在6月日首次推出GPT-Engineer,并介绍了这款AI工具最大的特点:简单易用,能够为用户提供价值;灵活且易于添加新的「AI步骤」;支持高级提示,可以记住用户反馈;能快速在AI和人类之间快速切换;所有计算都是「可恢复的」,并持久地保存到文件系统。这个项目独特地方在于,开发者在文本文件中提交需求,GPT-Engineer不是无条件接受这些要求,而是提出许多详细的问题来让程序员澄清缺失的细节。

       GPT-Engineer的工作流程分两个阶段:需求细化促进阶段和软件构建阶段。在需求细化阶段,用户提供的包含软件需求的文本文件被提交给GPT-Engineer,并被放置在OpenAI的GPT的初始消息中,同时还包括确定澄清问题的指示。GPT-Engineer系统接收来自OpenAI GPT-4的反馈,了解哪些需求需要澄清,并回应提示用户澄清的问题。整个过程循环,直到所有问题澄清到OpenAI GPT-4满意为止。在软件构建阶段,前一阶段提炼的需求被打包,并与OpenAI的GPT指令(即系统提示)和另外一套GPT-Engineer希望看到的输出指令(即用户提示)一起包装起来。GPT-Engineer收到来自OpenAI GPT-4的响应,然后创建源代码文件。

       使用GPT-Engineer,你可以创建一个多人可玩的贪吃蛇网页版游戏。你只需要输入一些关键提示,GPT-Engineer就会让你继续回答一些细节的问题,例如游戏规则和机制、玩家互联、游戏状态更新、用户界面、游戏控制、游戏结束状况和代码结构。具体步骤唰唰唰地来了,最后一款完美的贪吃蛇游戏代码就完成了。

       用户反馈显示,「澄清问题」是真正使GPT-Engineer脱颖而出的原因,因为修复生成代码中的问题往往比编写代码本身需要更多的时间。然而,这个项目火虽火,一位网友测试了GPT-Engineer,给出了体验:难设置,实际上不是创建文件,只是让你从命令行中运行一次(即不能调试),与ChatGPT4的能力相当。还有网友对基准指出了问题,GPT-Engineer做了几个简单的编程任务,并将它们作为基准,可以为你快速开发一个currency_converter,但不能正确编码一个pomodoro_timer。

       安装方法:对于稳定版本,使用pip install gpt-engineer;对于开发版,git clone git@github.com:AntonOsika/gpt-engineer.git,cd gpt-engineer,make install,source venv/bin/activate。设置使用GPT4访问权限的API密钥运行:export OPENAI_API_KEY=[your api key]。运行:创建一个空文件夹,如果在repo中,可以运行cp -r projects/example/ projects/my-new-project,在新文件夹中填写 main_prompt,运行gpt-engineer projects/my-new-project。检查 projects/my-new-project/workspace 中生成的文件。

       项目主要作者Anton Osika是Depict.ai的首席技术官,创建了机器学习推荐系统,通过尖端的机器学习、计算机视觉和自然语言处理来理解产品。就在4小时前,他还发了一条动态称,GPT-Engineer已经跃升到k星,一点也没有减速迹象。

参考资料:

github.com/AntonOsika/g...