1.【工具】Datax的源码基本概念(初识ETL工具)
2.大数据技术之Datax
3.å¦ä½å¨MaxComputeä¸è¿è¡HadoopMRä½ä¸
【工具】Datax的基本概念(初识ETL工具)
ETL技术的实质是将数据经过抽取、清洗转换之后加载到数据仓库的源码过程。DataX是源码由阿里巴巴研发并开源的异构数据源离线同步工具,能实现不同数据源之间的源码数据同步,包括关系型数据库、源码NoSQL数据存储、源码源码安装重启mysql无结构化数据存储、源码时间序列数据库以及阿里的源码云数仓数据存储。DataX是源码阿里云DataWorks数据集成的开源版本,用于在阿里巴巴集团内广泛使用的源码离线数据同步工具/平台,支持包括MySQL、源码Oracle、源码源码售卖交易OceanBase、源码SqlServer、源码Postgre、源码HDFS、Hive、ADS、HBase、TableStore(OTS)、MaxCompute(ODPS)、Hologres、DRDS等各种异构数据源之间的likeshop源码下载高效数据同步。
DataX采用Framework + plugin的架构,数据同步步骤将数据的读取、写入操作抽象为由Reader/Writer插件处理,纳入整个同步框架。其核心组件包括Job、Task、Channel以及Transformer。
Job代表数据同步任务;Task代表运行一个单独的同步线程,该线程使用一个Channel作为Reader与Writer的数据传输媒介;数据流转方向为Reader—>Channel—>Writer。
Transformer模式提供强大的数据转换功能,DataX内置丰富数据转换实现类,订单多源码用户可根据自身需求扩展数据转换。
DataX的安装部署可选择直接下载工具包或下载源码自主编译。下载后解压至本地目录即可运行同步作业。自检脚本为:python { YOUR_DATAX_HOME}/bin/datax.py { YOUR_DATAX_HOME}/job/job.json。
若数据源同步遇到格式不匹配问题,可以修改相应的reader与writer代码,然后maven编译,后续会提供具体源码修改示例。
DataX的源码可在gitee上找到,以解决github地址在国内可能存在的连接问题。参考网址提供了更多关于ETL工具-Datax的spring源码日志资源。
大数据技术之Datax
分享大数据技术之Datax的使用与特性,旨在解决大数据生产环境中的数据同步需求。Datax是阿里巴巴开源的异构数据源离线同步工具,支持多种数据源之间的数据同步,包括关系型数据库、HDFS、Hive、ODPS、HBase、FTP等。
Datax的核心设计思路是将复杂的同步链路转变为星型数据链路,作为中间传输载体实现数据同步。采用Framework + plugin架构,将数据源读取和写入抽象为Reader/Writer插件,使得框架负责内部的序列化传输、缓冲、并发、转换等,而数据采集和落地核心操作则由插件执行。
Datax拥有全面的插件体系,支持主流数据库、NoSQL、大数据计算系统等,提供丰富的数据源参考指南。单个数据同步作业由Job模块管理,启动进程完成整个同步过程。Job模块负责数据清理、子任务切分、TaskGroup管理等,将单一作业拆分为多个Task并行执行。每个Task由TaskGroup启动,执行Reader-Channel-Writer线程完成同步任务。
Datax快速入门指南提供下载地址和源码地址,需满足前置要求并完成安装。类图展示了Datax的启动流程,包括解析配置、设置参数、启动Engine、初始化reader和writer插件、切分任务、执行任务等步骤。Datax-web是基于Datax开发的分布式数据同步工具,提供用户界面,简化任务配置,支持多种数据源,提供同步进度、日志查看及终止功能,并集成时间、增量同步功能。
Datax-web的搭建教程可在官网找到,如遇疑问可直接联系作者。Datax与Datax-web结合使用,能够实现大数据采集模块的自动化和高效同步,减少开发成本。
以上内容仅为Datax技术概览,更多深入细节和实践案例将在后续文章中分享。希望读者在大数据领域取得成就,收获满满。我是脚丫先生,期待与您下期再见。
å¦ä½å¨MaxComputeä¸è¿è¡HadoopMRä½ä¸
MaxComputeï¼åODPSï¼æä¸å¥èªå·±çMapReduceç¼ç¨æ¨¡ååæ¥å£ï¼ç®å说æ¥ï¼è¿å¥æ¥å£çè¾å ¥è¾åºé½æ¯MaxComputeä¸çTableï¼å¤ççæ°æ®æ¯ä»¥Record为ç»ç»å½¢å¼çï¼å®å¯ä»¥å¾å¥½å°æè¿°Tableä¸çæ°æ®å¤çè¿ç¨ï¼ç¶èä¸ç¤¾åºçHadoopç¸æ¯ï¼ç¼ç¨æ¥å£å·®å¼è¾å¤§ãHadoopç¨æ·å¦æè¦å°åæ¥çHadoop MRä½ä¸è¿ç§»å°MaxComputeçMRæ§è¡ï¼éè¦éåMRç代ç ï¼ä½¿ç¨MaxComputeçæ¥å£è¿è¡ç¼è¯åè°è¯ï¼è¿è¡æ£å¸¸ååææä¸ä¸ªJarå æè½æ¾å°MaxComputeçå¹³å°æ¥è¿è¡ãè¿ä¸ªè¿ç¨ååç¹çï¼éè¦èè´¹å¾å¤çå¼ååæµè¯äººåãå¦æè½å¤å®å ¨ä¸æ¹æè å°éå°ä¿®æ¹åæ¥çHadoop MR代ç å°±è½å¨MaxComputeå¹³å°ä¸è·èµ·æ¥ï¼å°æ¯ä¸ä¸ªæ¯è¾çæ³çæ¹å¼ã
ç°å¨MaxComputeå¹³å°æä¾äºä¸ä¸ªHadoopMRå°MaxCompute MRçéé å·¥å ·ï¼å·²ç»å¨ä¸å®ç¨åº¦ä¸å®ç°äºHadoop MRä½ä¸çäºè¿å¶çº§å«çå ¼å®¹ï¼å³ç¨æ·å¯ä»¥å¨ä¸æ¹ä»£ç çæ åµä¸éè¿æå®ä¸äºé ç½®ï¼å°±è½å°åæ¥å¨Hadoopä¸è¿è¡çMR jarå æ¿è¿æ¥ç´æ¥è·å¨MaxComputeä¸ãç®å该æ件å¤äºæµè¯é¶æ®µï¼ææ¶è¿ä¸è½æ¯æç¨æ·èªå®ä¹comparatoråèªå®ä¹keyç±»åï¼ä¸é¢å°ä»¥WordCountç¨åºä¸ºä¾ï¼ä»ç»ä¸ä¸è¿ä¸ªæ件çåºæ¬ä½¿ç¨æ¹å¼ã
使ç¨è¯¥æ件å¨MaxComputeå¹³å°è·ä¸ä¸ªHadoopMRä½ä¸çåºæ¬æ¥éª¤å¦ä¸ï¼
1. ä¸è½½HadoopMRçæ件
ä¸è½½æ件ï¼å å为hadoop2openmr-1.0.jarï¼æ³¨æï¼è¿ä¸ªjaréé¢å·²ç»å å«hadoop-2.7.2çæ¬çç¸å ³ä¾èµï¼å¨ä½ä¸çjarå ä¸è¯·ä¸è¦æºå¸¦hadoopçä¾èµï¼é¿å çæ¬å²çªã
2. åå¤å¥½HadoopMRçç¨åºjarå
ç¼è¯å¯¼åºWordCountçjarå ï¼wordcount_test.jar ï¼wordcountç¨åºçæºç å¦ä¸:
package com.aliyun.odps.mapred.example.hadoop;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
import java.util.StringTokenizer;
public class WordCount {
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
3. æµè¯æ°æ®åå¤
å建è¾å ¥è¡¨åè¾åºè¡¨
create table if not exists wc_in(line string);
create table if not exists wc_out(key string, cnt bigint);
éè¿tunnelå°æ°æ®å¯¼å ¥è¾å ¥è¡¨ä¸
å¾ å¯¼å ¥ææ¬æ件data.txtçæ°æ®å 容å¦ä¸ï¼
hello maxcompute
hello mapreduce
ä¾å¦å¯ä»¥éè¿å¦ä¸å½ä»¤å°data.txtçæ°æ®å¯¼å ¥wc_inä¸ï¼
tunnel upload data.txt wc_in;
4. åå¤å¥½è¡¨ä¸hdfsæ件路å¾çæ å°å ³ç³»é ç½®
é ç½®æ件å½å为ï¼wordcount-table-res.conf
{
"file:/foo": {
"resolver": {
"resolver": "c.TextFileResolver",
"properties": {
"text.resolver.columns.combine.enable": "true",
"text.resolver.seperator": "\t"
}
},
"tableInfos": [
{
"tblName": "wc_in",
"partSpec": { },
"label": "__default__"
}
],
"matchMode": "exact"
},
"file:/bar": {
"resolver": {
"resolver": "openmr.resolver.BinaryFileResolver",
"properties": {
"binary.resolver.input.key.class" : "org.apache.hadoop.io.Text",
"binary.resolver.input.value.class" : "org.apache.hadoop.io.LongWritable"
}
},
"tableInfos": [
{
"tblName": "wc_out",
"partSpec": { },
"label": "__default__"
}
],
"matchMode": "fuzzy"
}
}