FindVariableFeatures
åç»èæç« å±åºä¸éï¼å¨éç°æç« æ°æ®çæ¶ååç°ï¼æçæç« æä¾çæ¯å¤çåçåç»èç©éµï¼èä¸æ¯åå§countsãå ¶ä¸æçæ°æ®çè³æ¯scaled dataï¼è¿æ ·æå°±æçé®ï¼ç´æ¥å©ç¨scaled dataè½å¦è¿è¡åç»èåæã
åç»èæ°æ®è¿è¡åæ主è¦æå 个æ¥éª¤ï¼lognormalizedï¼FindVariableFeaturesï¼scaledataï¼PCAï¼FindClustersãå ¶ä¸ï¼å¯ä»¥ç¥è¿lognormalizedåscaledataæ¥éª¤ï¼ä½æ¯FindVariableFeaturesç¨æ¥åç°é«å¯ååºå ï¼ä¼¼ä¹åªæscaled dataä¸è½è¿è¡é«å¯ååºå çåç°ï¼ä¸è¿ä¸æ¥çé«å¯ååºå ç¨äºåç»PCAåæï¼ä¹ä¸è½çç¥ï¼å æ¤æçäºä¸FindVariableFeaturesçæºç ï¼Seurat V3çæ¬ï¼ï¼
å¯ä»¥çå°ï¼é«å¯ååºå çè·åæ¯å©ç¨åå§countsç©éµæè lognormalized dataçj计ç®çï¼ä¹å°±æ¯è¯´seuratä½è 认为scaled dataæ¥è®¡ç®é«å¯ååºå å¯è½æ¯ä¸åç¡®çï¼å æ¤æç« åªæä¾äºscaled dataæ¯ä¸è½è¿è¡é«å¯ååºå ç计ç®çã
å½ç¶ï¼ä¼æ好(tai)å¥(gang)ç人é®äºï¼æå°±æ¯è¦ç¨scaled dataæ¥è¿è¡FindVariableFeaturesï¼ä¼å¾å°æ¯è¾å¯é çé«å¯ååºå åï¼å æ¤ï¼ææµè¯äºä¸è¿ç¨counts, lognormalized data, scaled dataæ¥è¿è¡é«å¯ååºå è·åï¼
å¯ä»¥çå°ï¼å©ç¨scaled data计ç®åºæ¥çé«å¯ååºå ä¸counts,data计ç®åºæ¥çå·®å«æ¯å¾å¤§çã
é£ä¹æ²¡æé«å¯ååºå æ¯ä¸æ¯å°±ä¸è½è¿è¡PCAçéç»´åæäºå¢ï¼ç论ä¸å½ç¶ä¸æ¯ï¼RunPCAå¯ä»¥èªå·±æå®åºå æ¥è¿è¡ã
C#中如何编写PCA算法代码?
PCA的处理步骤:1,均值化
2,码实求协方差矩阵(我知道的码实有两种方法,这是码实第一种,按部就班的码实扫雷源码代码编码求,第二种是码实:(A*A‘/(N-1)))
3,求协方差的码实特征值和特征向量
4,将特征值按照从大到小的码实顺序排序,选择其中最大的码实k个,然后将其对应的码实k个特征向量分别作为列向量组成特征向量矩阵
5,将样本点投影到选取的码实特征向量上
matlab实现源代码
%PCA算法,matlab实现function F=pcad(A,码实n)%A是M*N
%测试实例A=[2.5,0.5,2.2,1.9,3.1,2.3,2,1,1.5,1.1;2.4,0.7,2.9,2.2,3.0,2.7,1.6,1.1,1.6,0.9]
%结果F=[0.,-1.,码实0.,码实0.,1.,0.,-0.,-1.,熊猫烧香文件源码-0.,-1.]
%PCA第一步:均值化
X=A-repmat(mean(A,2),1,size(A,2))%去均值
%PCA第二步:求特征协方差矩阵
B=COV(X')%求协方差
%PCA第三步:求特征协方差矩阵的特征值和特征向量
[v,d]=eig(B)%求特征值和特征向量
%PCA第四步:将特征值按照从大到小的顺序排序
d1=diag(d);%取出对角矩阵,也就是把特征值提出来组成一个新的M*1的d1矩阵
[d2 index]=sort(d1); %特征值以升序排序 d2是排序后的结果 index是数排序以前的排名位置
cols=size(v,2);% 特征向量矩阵的列数
for i=1:cols %对特征向量做相反位置的调整 是个降序排列。这个过程把特征值和特征向量同时做相应的降序排列
vsort(:,i) = v(:,index(cols-i+1) ); % vsort 是一个M*col(注:col一般等于M)阶矩阵,保存的是按降序排列的特征向量,每一列构成一个特征向量
%vsort保存的是协方差矩阵降序后的特征向量,为M*M阶
dsort(i) = d1(index(cols-i+1)); % dsort 保存的是按降序排列的特征值,是一维行向量,1*M
end %完成降序排列
M=vsort(:,1:n)%提取主成分量
%PCA第五步:将样本点投影到选取的特征向量上
F=(X'*M)'%最终的投影
PCA 降维算法 —— 原理与实现
PCA(主成分分析)是一种常用的数据降维方法,通过线性变换提取数据的主要特征分量。适用于高维数据处理,具体步骤如下:
1. 收集[公式]条[公式]维数据。
2. 计算数据的协方差矩阵。
3. 求解协方差矩阵的特征值与特征向量。
4. 选择最大的特征值对应的特征向量作为主成分,依次类推。
使用numpy库实现PCA的Python代码如下:
源代码链接:[github.com/leizhang-geo...]
PCA的核心思想是将方差最大的方向作为主特征,使得数据在不同正交方向上相互独立。这有助于简化数据结构,但PCA存在局限性。量能数据源码对于高阶相关性数据,考虑使用Kernel PCA,通过Kernel函数转换为线性相关。PCA假设主特征分布在正交方向上,非正交方向存在较大方差时,PCA效果不佳。PCA是一种无参数技术,通用性强,但缺乏个性化优化能力。
PCA:I2C转路PWM,助力你的系统
PCA是一种主要用作I2C转路PWM的集成电路,适用于舵机控制、LED颜色控制等。其控制精度在Hz的控制频率下,脉宽为0.5ms~2.5ms,具备位分辨率(级),具体精度计算需参考相关资料。
PCA有两种封装形式:TSSOP与HVQFN,各有相应的公开源码犯法引脚排列。每个引脚的功能描述如下图所示。引脚A0-A5共同决定器件地址,由于有6个引脚参与,因此可有个不同的器件地址。除了LED All Call address (E0h)和Software Reset address (h)外,实际可用地址为个,理论上,1个I2C接口可控制多达路PWM。器件地址的设置示意图如下图所示。默认情况下,若A0-A5全部接地,则器件地址为0x。
默认状态下,上电复位后,寄存器地址默认值为0,具体寄存器地址及其用途见下图。重点关注以下寄存器:模式设置寄存器、PWM通道寄存器与占空比设置、PWM周期(频率)寄存器与周期(频率)设置。秒开iptv源码
在使用模式设置寄存器时,需注意以下事项:首先介绍MODE1寄存器,其功能如下图所示。在配置模式时,特别关注MODE2寄存器的各位功能,如图所示。
PWM通道寄存器的设置如下图所示,每个通道有4个寄存器,每个寄存器图解如图所示。在设置PWM占空比时,首先配置舵机,例如ON < OFF情况。特殊情况下,PWM周期大于定时器一次计数时,配置ON>OFF情况。
配置PWM频率时,一般采用内置晶振,频率为MHz。通过配置PRE_SCALE寄存器来调整频率,其与PWM频率的关系见下图。若使用内置晶振,取osc_clock=,update_rate=(舵机控制频率Hz)。
推荐硬件设计时,确保OE引脚接低电平以确保IC使能。若连接LED灯,则推荐连接方式如下图所示。
软件设计部分,Micro:bit平台采用TypeScript(JavaScript的超类)进行底层开发,提供基本操作方法及其思路。日后再更新C、C++及其它平台(STM、Linux树莓派、Arduino等)的操作方法。Micro:bit驱动PCA的源代码提供,注意源代码中的时间为us,与教程中的ms不同。
树莓派平台采用Python驱动PCA,首先安装Python和smbus库。Python代码如下所示,保存文件名为pca.py,命令行进入该文件所在的路径,运行该Python脚本。执行命令后,即可控制舵机从0度转到度,再从度转到0度。
PCA降维(python)
PCA(主成分分析),作为常见的数据分析工具,通过线性变换实现高维数据的有效降维。其核心原理是将冗余的高维数据转化为一组不相关的低维表示,保留数据的主要特征信息。以iris数据集为例,PCA可将个相关变量压缩成5个主要成分,显著简化数据结构,提高分析效率。 进行PCA降维通常包括以下步骤:首先,确保数据预处理无缺失值,因为PCA基于变量间的相关性;其次,根据研究目标选择PCA(降维)或EFA(探索潜在结构);接着,确定主成分或因子数量;然后,进行主成分或因子选择并可能进行旋转以增强解释性;最后,解释降维结果并计算主成分得分。 在实践中,未调用特定包时,我们可以直观地观察特征值,如选取前两个主成分就能达到%的累积贡献率。比较降维前后数据的可视化效果,降维后的数据分布更清晰。至于包调用,如使用sklearn库,提供了更便捷的接口实现PCA降维,如通过PCA类进行操作。 深入了解PCA的数学原理和Python实现,可以参考以下资源:郑申海:PCA的数学原理
PCA(主成分分析)的python源码实现
Python实现PCA降维教程
机器学习中的PCA主成分分析指南
Python与数据分析:炼数成金-Dataguru专业数据分析社区中的PCA详解
这些资源将帮助你深入理解PCA并应用于实际的数据处理工作中。
综合评价与决策——主成分分析(PCA)法(附Python源码)
本文探讨了综合评价与决策过程中的主成分分析(PCA)法,其核心在于量化评价对象的相对优劣。具体做法如下:
首先,考虑有n个评价对象,每个对象被分配到m个评价属性上,形成决策矩阵。矩阵中的每个行向量代表一个评价对象。
主成分分析(PCA)的核心思想是通过线性组合,最大化各分量的方差之和。其具体步骤包括数据预处理、计算相关系数矩阵的特征值与特征向量,以及计算评分模型。
在数据预处理阶段,将所有属性标准化,形成标准决策阵。
接着,计算相关系数矩阵的特征值与特征向量,特征向量构成旋转坐标系,使各分量方差之和最大化。
通过计算主成分贡献率与累积贡献率,确定前k个主成分,其中k通常设为使累积贡献率达到0.9的值。这k个主成分的线性组合得到最终评分模型。
应用实例中,以我国-年宏观投资效益数据为例,通过PCA法,得到评分向量,从而对这些年的投资效益进行排序。
附Python源码,用于实现上述PCA过程的完整步骤。
参考文献提供了理论基础,包括数学建模算法与应用、机器学习等领域的相关内容。
2024-12-22 22:27
2024-12-22 22:08
2024-12-22 20:58
2024-12-22 19:54
2024-12-22 19:52