1.Flink Collector Output 接口源码解析
2.保姆级教程!源码玩转 ChunJun 详细指南
3.Flink深入浅出:JDBC Connector源码分析
4.Flink mysql-cdc connector 源码解析
Flink Collector Output 接口源码解析
Flink Collector Output 接口源码解析
Flink中的源码Collector接口和其扩展Output接口在数据传递中起关键作用。Output接口增加了Watermark功能,源码是源码数据传输的基石。本文将深入解析collect方法及相关重要实现类,源码帮助理解数据传递的源码源码uchardet逻辑和场景划分。Collector和Output接口
Collector接口有2个核心方法,源码Output接口则增加了4个功能,源码WatermarkGaugeExposingOutput接口则专注于显示Watermark值。源码主要关注collect方法,源码它是源码数据发送的核心操作,Flink中有多个Output实现类,源码针对不同场景如数据传递、源码Metrics统计、源码广播和时间戳处理。源码Output实现类分类
Output类可以归类为:同一operatorChain内的数据传递(如ChainingOutput和CopyingChainingOutput)、跨operatorChain间(RecordWriterOutput)、统计Metrics(CountingOutput)、广播(BroadcastingOutputCollector)和时间戳处理(TimestampedCollector)。示例应用与调用链路
通过一个示例,电脑优化内存源码我们了解了Kafka Source与Map算子之间的数据传递使用ChainingOutput,而Map到Process之间的传递则用RecordWriterOutput。在不同Output的选择中,objectReuse配置起着决定性作用,影响性能和安全性。 总结来说,ChainingOutput用于operatorChain内部,RecordWriterOutput处理跨chain,CountingOutput负责Metrics,BroadcastingOutputCollector用于广播,TimestampedCollector则用于设置时间戳。开启objectReuse会影响选择的Output类型。阅读推荐
Flink任务实时监控
Flink on yarn日志收集
Kafka Connector更新
自定义Kafka反序列化
SQL JSON Format源码解析
Yarn远程调试源码
State Processor API状态操作
侧流输出源码
Broadcast流状态源码解析
Flink启动流程分析
Print SQL Connector取样功能
保姆级教程!玩转 ChunJun 详细指南
ChunJun 是一款强大的数据集成框架,它以稳定、易用和高效著称,支持大规模数据同步与实时计算。无论是静态数据如MySQL、HDFS,django源码分析 书籍还是实时变化的数据如binlog、Kafka,ChunJun都能轻松处理。其原生支持FlinkSQL的语法和特性,使得数据开发人员能专注于业务场景的构建,有效提升工作效率。
经过多年的迭代,ChunJun已成为众多企业的数据整合利器,解决了数据抽取的繁琐工作。作为系列教程的第三部分,本文将引导你如何配置ChunJun任务,通过ChunJun Client提交任务,让你全面掌握如何玩转这个工具。ChunJun的脚本支持Sync(Json)和SQL模式,每种模式都有其特定的配置和应用场景。
首先,要使用ChunJun,你需要Java(JDK8)和Maven(推荐3.6.3版本)。可以从ChunJun的如何关联as源码GitHub或Gitee仓库下载release版本,或者选择编译源码。此外,ChunJun的代码风格管理依赖于spotless插件,记得在提交代码前进行格式化。
接下来,通过四种模式了解如何通过ChunJun Client提交任务:LocalTest(本地调试)、Standalone(独立模式)、Yarn Session(YARN会话模式)和Yarn Perjob(即将废弃的模式)。每种模式都有详细的环境准备和操作步骤,帮助你顺利启动和监控任务。
最后,如果你遇到问题,ChunJun提供了本地和远程调试选项,以便快速定位和解决问题。如果你对ChunJun的介绍和帮助感到满意,别忘了分享和关注相关资料,获取更多大数据和开源资讯。
Flink深入浅出:JDBC Connector源码分析
大数据开发中,数据分析与报表制作是资料收集大师源码日常工作中最常遇到的任务。通常,我们通过读取Hive数据来进行计算,并将结果保存到数据库中,然后通过前端读取数据库来进行报表展示。然而,使用FlinkSQL可以简化这一过程,通过一个SQL语句即可完成整个ETL流程。
在Flink中,读取Hive数据并将数据写入数据库是常见的需求。本文将重点讲解数据如何写入数据库的过程,包括刷写数据库的机制和原理。
以下是本文将讲解的几个部分,以解答在使用过程中可能产生的疑问:
1. 表的定义
2. 定义的表如何找到具体的实现类(如何自定义第三方sink)
3. 写入数据的机制原理
(本篇基于1..0源码整理而成)
1. 表的定义
Flink官网提供了SQL中定义表的示例,以下以oracle为例:
定义好这样的表后,就可以使用insert into student执行插入操作了。接下来,我们将探讨其中的技术细节。
2. 如何找到实现类
实际上,这一过程涉及到之前分享过的SPI(服务提供者接口),即DriverManager去寻找Driver的过程。在Flink SQL执行时,会通过translate方法将SQL语句转换为对应的Operation,例如insert into xxx中的xxx会转换为CatalogSinkModifyOperation。这个操作会获取表的信息,从而得到Table对象。如果这个Table对象是CatalogTable,则会进入TableFactoryService.find()方法找到对应的实现类。
寻找实现类的过程就是SPI的过程。即通过查找路径下所有TableFactory.class的实现类,加载到内存中。这个SPI的定义位于resources下面的META-INFO下,定义接口以及实现类。
加载到内存后,首先判断是否是TableFactory的实现类,然后检查必要的参数是否满足(如果不满足会抛出异常,很多人在第一次使用Flink SQL注册表时,都会遇到NoMatchingTableFactoryException异常,其实都是因为配置的属性不全或者Jar报不满足找不到对应的TableFactory实现类造成的)。
找到对应的实现类后,调用对应的createTableSink方法就能创建具体的实现类了。
3. 工厂模式+创建者模式,创建TableSink
JDBCTableSourceSinkFactory是JDBC表的具体实现工厂,它实现了stream的sinkfactory。在1..0版本中,它不能在batch模式下使用,但在1.版本中据说会支持。这个类使用了经典的工厂模式,其中createStreamTableSink负责创建真正的Table,基于创建者模式构建JDBCUpsertTableSink。
创建出TableSink之后,就可以使用Flink API,基于DataStream创建一个Sink,并配置对应的并行度。
4. 消费数据写入数据库
在消费数据的过程中,底层基于PreparedStatement进行批量提交。需要注意的是提交的时机和机制。
控制刷写触发的最大数量 'connector.write.flush.max-rows' = ''
控制定时刷写的时间 'connector.write.flush.interval' = '2s'
这两个条件先到先触发,这两个参数都是可以通过with()属性配置的。
JDBCUpsertFunction很简单,主要的工作是包装对应的Format,执行它的open和invoke方法。其中open负责开启连接,invoke方法负责消费每条数据提交。
接下来,我们来看看关键的format.open()方法:
接下来就是消费数据,执行提交了
AppendWriter很简单,只是对PreparedStatement的封装而已
5. 总结
通过研究代码,我们应该了解了以下关键问题:
1. JDBC Sink执行的机制,比如依赖哪些包?(flink-jdbc.jar,这个包提供了JDBCTableSinkFactory的实现)
2. 如何找到对应的实现?基于SPI服务发现,扫描接口实现类,通过属性过滤,最终确定对应的实现类。
3. 底层如何提交记录?目前只支持append模式,底层基于PreparedStatement的addbatch+executeBatch批量提交
4. 数据写入数据库的时机和机制?一方面定时任务定时刷新,另一方面数量超过限制也会触发刷新。
更多Flink内容参考:
Flink mysql-cdc connector 源码解析
Flink 1. 引入了 CDC功能,用于实时同步数据库变更。Flink CDC Connectors 提供了一组源连接器,支持从MySQL和PostgreSQL直接获取增量数据,如Debezium引擎通过日志抽取实现。以下是Flink CDC源码解析的关键部分:
首先,MySQLTableSourceFactory是实现的核心,它通过DynamicTableSourceFactory接口构建MySQLTableSource对象,获取数据库和表的信息。MySQLTableSource的getScanRuntimeProvider方法负责创建用于读取数据的运行实例,包括DeserializationSchema转换源记录为Flink的RowData类型,并处理update操作时的前后数据。
DebeziumSourceFunction是底层实现,继承了RichSourceFunction和checkpoint接口,确保了Exactly Once语义。open方法初始化单线程线程池以进行单线程读取,run方法中配置DebeziumEngine并监控任务状态。值得注意的是,目前只关注insert, update, delete操作,表结构变更暂不被捕捉。
为了深入了解Flink SQL如何处理列转行、与HiveCatalog的结合、JSON数据解析、DDL属性动态修改以及WindowAssigner源码,可以查阅文章。你的支持是我写作的动力,如果文章对你有帮助,请给予点赞和关注。
本文由文章同步助手协助完成。