1.在 Nvidia Docker 容器编译构建显存优化加速组件 xFormers
2.JobSchedulerç使ç¨ååç
3.SpringBoot定时任务 - 集成quartz实现定时任务(单实例和分布式两种方式)
4.分布式任务调度平台xxl-job
5.技术人生阅读源码——Quartz源码分析之任务的源码调度和执行
在 Nvidia Docker 容器编译构建显存优化加速组件 xFormers
本篇文章,聊聊如何在新版本 PyTorch 和 CUDA 容器环境中完成 xFormers 的源码编译构建。
让你的源码模型应用能够跑的更快。
写在前面
xFormers[1] 是源码 FaceBook Research (Meta)开源的使用率非常高的 Transformers 加速选型,当我们使用大模型的源码时候,如果启用 xFormers 组件,源码大掌门2源码能够获得非常明显的源码性能提升。
因为 xFormers 对于 Pytorch 和 CUDA 新版本支持一般会晚很久。源码所以,源码时不时的源码我们能够看到社区提出不能在新版本 CUDA 中构建的问题( #[2]或 #[3]),以及各种各样的源码编译失败的问题。
另外,源码xFormers 的源码安装还有一个问题,会在安装的源码时候调整当前环境已经安装好的 PyTorch 和 Numpy 版本,比如我们使用的源码是已经被验证过的环境,比如 Nvidia 的五洲源码月度发布的容器环境,这显然是我们不乐见的事情。
下面,我们就来解决这两个问题,让 xFormers 能够在新的 CUDA 环境中完成编译,以及让 xFormers 的安装不需要变动我们已经安装好的 Pytorch 或者 Numpy。
环境准备
环境的准备一共有两步,下载容器和 xFormers 源代码。
Nvidia 容器环境
在之前的 许多文章[4]中,我提过很多次为了高效运行模型,我推荐使用 Nvidia 官方的容器镜像( nvcr.io/nvidia/pytorch:.-py3[5])。
下载镜像很简单,一条命令就行:
完成镜像下载后,准备工作就完成了一半。
准备好镜像后,我们可以检查下镜像中的极简邮箱源码具体组件环境,使用docker run 启动镜像:
然后,使用python -m torch.utils.collect_env 来获取当前环境的信息,方便后续完成安装后确认原始环境稳定:
获取 xFormers
下载 xFormers 的源代码,并且记得使用--recursive 确保所有依赖都下载完毕:
xFormers 的源码包含三个核心组件cutlass、flash-attention、sputnik,除去最后一个开源软件在 xFormers 项目 sputnik 因为 Google 不再更新,被固定了代码版本,其他两个组件的版本分别为:cutlass@3.2 和 flash-attention@2.3.6。
Dao-AILab/flash-attention[6]目前最新的版本是 v2.4.2,不过更新的主干版本包含了更多错误的修复,推荐直接升级到最新版本。在 v2.4.2 版本中,它依赖的 cutlass 版本为 3.3.0,所以我们需要升级 cutlass 到合适的麻将推倒胡源码版本。
Nvidia/cutlass[7] 在 3.1+ 的版本对性能提升明显。
不过如果直接更新 3.2 到目前最新的 3.4flash-attention 找不到合适的版本,会发生编译不通过的问题,所以我们将版本切换到 v3.3.0 即可。
另外,在前文中提到了在安装 xFormers 的时候,会连带更新本地已经安装好的依赖。想要保护本地已经安装好的环境不被覆盖,尤其是 Nvidia 容器中的依赖不被影响,我们需要将xformers/requirements.txt 内容清空。
好了,到这里准备工作就结束了。
完成容器中的 xFormers 的安装
想要顺利完成 xFormers 的构建,还有一些小细节需要注意。为了让我们能够从源码进行构建,2018新春网页源码我们需要关闭我们下载 xFormers 路径的 Git 安全路径检查:
为了让构建速度有所提升,我们需要安装一个能够让我们加速完成构建的工具ninja:
当上面的工具都完成后,我们就可以执行命令,开始构建安装了:
需要注意的是,默认情况下安装程序会根据你的 CPU 核心数来设置构建进程数,不过过高的工作进程,会消耗非常多的内存。如果你的 CPU 核心数非常多,那么默认情况下直接执行上面的命令,会得到非常多的Killed 的编译错误。
想要解决这个问题,我们需要设置合理的MAX_JOBS 参数。如果你的硬件资源有限,可以设置 MAX_JOBS=1,如果你资源较多,可以适当增加数值。我的构建设备有 G 内存,我一般会选择设置 MAX_JOBS=3 来使用大概最多 GB 的内存,来完成构建过程,MAX_JOBS 的构建内存消耗并不是完全严格按照线性增加的,当我们设置为 1 的时候,GB 的设备就能够完成构建、当我们设置为 2 的时候,使用 GB 的设备构建会比较稳妥,当设置到 4 的时候,构建需要的内存就需要 GB 以上了。
构建的过程非常漫长,过程中我们可以去干点别的事情。
当然,为了我们后续使用镜像方便,最好的方案是编写一个 Dockerfile,然后将构建的产物保存在镜像中,以方便后续各种场景使用:
在构建的时候,我们可以使用类似下面的命令,来搞定既使用了最新的 Nvidia 镜像,包含最新的 Pytorch 和 CUDA 版本,又包含 xFormers 加速组件的容器环境。
如果你是在本机上进行构建,没有使用 Docker,那么构建成功,你将看到类似下面的日志:
等待漫长的构建结束,我们可以使用下面的命令,来启动一个包含构建产物的容器,来测试下构建是否成功:
当我们进入容器的交互式命令行之后,我们可以执行python -m xformers.info,来验证 xFromers 是否构建正常:
以及,使用python -m torch.utils.collect_env 再次确认下环境是否一致:
最后
好了,这篇文章就先写到这里啦。
JobSchedulerç使ç¨ååç
JobScheduler主è¦ç¨äºå¨æªæ¥æ个æ¶é´ä¸æ»¡è¶³ä¸å®æ¡ä»¶æ¶è§¦åæ§è¡æ项任å¡çæ åµï¼æ¶åçæ¡ä»¶å¯ä»¥æ¯ç½ç»ãçµéãæ¶é´çï¼ä¾å¦æ§è¡ç¹å®çç½ç»ãæ¯å¦åªå¨å çµæ¶æ§è¡ä»»å¡çãJobSchedulerç±»è´è´£å°åºç¨éè¦æ§è¡çä»»å¡åéç»æ¡æ¶ï¼ä»¥å¤å¯¹è¯¥åºç¨Jobçè°åº¦ï¼æ¯ä¸ä¸ªç³»ç»æå¡ï¼å¯ä»¥éè¿å¦ä¸æ¹å¼è·åï¼
JobInfoæ¯ä¼ éç»JobSchedulerç±»çæ°æ®å®¹å¨ï¼å®å°è£ äºé对è°ç¨åºç¨ç¨åºè°åº¦ä»»å¡æéçåç§çº¦æï¼ä¹å¯ä»¥è®¤ä¸ºä¸ä¸ªJobInfo对象对åºä¸ä¸ªä»»å¡ï¼JobInfo对象éè¿JobInfo.Builderå建ãå®å°ä½ä¸ºåæ°ä¼ éç»JobSchedulerï¼
JobInfo.Builderæ¯JobInfoçä¸ä¸ªå é¨ç±»ï¼ç¨æ¥å建JobInfoçBuilderç±»ã
JobServiceæ¯JobScheduleræç»åè°ç端ç¹ï¼JobSchedulerå°ä¼åè°è¯¥ç±»ä¸çonStartJob()å¼å§æ§è¡å¼æ¥ä»»å¡ãå®æ¯ä¸ä¸ªç»§æ¿äºJobServiceçæ½è±¡ç±»ï¼å为系ç»åè°æ§è¡ä»»å¡å 容çç»ç«¯ï¼JobScheduleræ¡æ¶å°éè¿bindService()æ¹å¼æ¥å¯å¨è¯¥æå¡ãå æ¤ï¼ç¨æ·å¿ é¡»å¨åºç¨ç¨åºä¸å建ä¸ä¸ªJobServiceçåç±»ï¼å¹¶å®ç°å ¶onStartJob()çåè°æ¹æ³ï¼ä»¥åå¨AndroidManifest.xmlä¸å¯¹å®æäºå¦ä¸æéï¼
注æå¨AndroidManifest.xmlä¸æ·»å æé
å½ä»»å¡å¼å§æ¶ä¼æ§è¡onStartJob(JobParameters params)æ¹æ³ï¼å¦æè¿åå¼æ¯falseï¼åç³»ç»è®¤ä¸ºè¿ä¸ªæ¹æ³è¿åæ¶ï¼ä»»å¡å·²ç»æ§è¡å®æ¯ãå¦æè¿åå¼æ¯trueï¼é£ä¹ç³»ç»è®¤ä¸ºè¿ä¸ªä»»å¡æ£è¦è¢«æ§è¡ï¼æ§è¡ä»»å¡çéæ å°±è½å¨äºä½ çè©ä¸ãå½ä»»å¡æ§è¡å®æ¯æ¶ä½ éè¦è°ç¨jobFinished(JobParameters params, boolean needsRescheduled)æ¥éç¥ç³»ç»ã
å½ç³»ç»æ¥æ¶å°ä¸ä¸ªåæ¶è¯·æ±æ¶ï¼ç³»ç»ä¼è°ç¨onStopJob(JobParameters params)æ¹æ³åæ¶æ£å¨çå¾ æ§è¡çä»»å¡ãå¾éè¦çä¸ç¹æ¯å¦æonStartJob(JobParameters params)è¿åfalseï¼é£ä¹ç³»ç»åå®å¨æ¥æ¶å°ä¸ä¸ªåæ¶è¯·æ±æ¶å·²ç»æ²¡ææ£å¨è¿è¡çä»»å¡ãæ¢å¥è¯è¯´ï¼onStopJob(JobParameters params)å¨è¿ç§æ åµä¸ä¸ä¼è¢«è°ç¨ã
éè¦æ³¨æçæ¯è¿ä¸ªJob Serviceè¿è¡å¨ä¸»çº¿ç¨ï¼è¿æå³çä½ éè¦ä½¿ç¨å线ç¨ï¼handlerï¼æè ä¸ä¸ªå¼æ¥ä»»å¡æ¥è¿è¡èæ¶çæä½ä»¥é²æ¢é»å¡ä¸»çº¿ç¨ã
Googleå®æ¹çSampleï¼ /post/
技术人生阅读源码——Quartz源码分析之任务的调度和执行
Quartz源码分析:任务调度与执行剖析
Quartz的调度器实例化时启动了调度线程QuartzSchedulerThread,它负责触发到达指定时间的任务。该线程通过`run`方法实现调度流程,包含三个主要阶段:获取到达触发时间的triggers、触发triggers、执行triggers对应的jobs。
获取到达触发时间的triggers阶段,通过`JobStore`接口的`acquireNextTriggers`方法获取,由`RAMJobStore`实现具体逻辑。触发triggers阶段,调用`triggersFired`方法通知`JobStore`触发triggers,处理包括更新trigger状态与保存触发过程相关数据等操作。执行triggers对应jobs阶段,真正执行job任务,先构造job执行环境,然后在子线程中执行job。
job执行环境通过`JobRunShell`提供,确保安全执行job,捕获异常,并在任务完成后根据`completion code`更新trigger。job执行环境包含job对象、trigger对象、触发时间、上一次触发时间与下一次触发时间等数据。Quartz通过线程池提供多线程服务,使用`SimpleThreadPool`实例化`WorkerThread`来执行job任务,最终调用`Job`的`execute`方法实现业务逻辑。
综上所述,Quartz通过精心设计的线程调度与执行流程,确保了任务的高效与稳定执行,展示了其强大的任务管理能力。