1.OpenHarmony—内核对象事件之源码详解
2.如何制作静态网站源码,任务任务相当于做任务,联盟联盟,源码源码用商家发一个任务,任务任务刷手去接,联盟联盟,源码源码用绝地辅助官网源码任务完成后金币落入对方的任务任务账号。。联盟联盟
3.深度解析sync WaitGroup源码
4.Nacos源码之配置管理 三TaskManager 任务管理的源码源码用使用
5.硬核干货:4W字从源码上分析JUC线程池ThreadPoolExecutor的实现原理
6.Ray 源码解析(一):任务的状态转移和组织形式
OpenHarmony—内核对象事件之源码详解
对于嵌入式开发和技术爱好者,深入理解OpenHarmony的任务任务内核对象事件源码是提升技能的关键。本文将通过数据结构解析,联盟联盟揭示事件机制的源码源码用核心原理,引导大家探究任务间IPC的任务任务内在逻辑。
关键数据结构
首先,联盟联盟了解PEVENT_CB_S数据结构,源码源码用它是事件的核心:uwEventID标识任务的事件类型,个位(保留位)可区分种事件;stEventList双向循环链表是理解事件的核心,任务等待事件时会挂载到链表,事件触发后则从链表中移除。
事件初始化
事件控制块由任务自行创建,通过LOS_EventInit初始化,此时链表为空,表示没有事件发生。任务通过创建eventCB指针并初始化,开始事件管理。
事件写操作
任务通过LOS_EventWrite写入事件,可以一次设置多个事件。1处的逻辑允许一次写入多个事件。2-3处检查事件链表,唤醒等待任务,通过双向链表结构确保任务顺序执行。
事件读操作
轻量级操作系统提供了两种事件读取方式:LOS_EventPoll支持主动检查,而LOS_EventRead则为阻塞读。1处区分两种读取模式,2-4处根据模式决定任务挂起或直接读取。
事件销毁操作
事件使用完毕后,需通过LOS_EventClear清除事件标志,并在LOS_EventDestroy中清理事件链表,确保资源的正确释放。
总结
通过以上的详细分析,OpenHarmony的内核事件机制已清晰可见。掌握这些原理,开发者可以更自如地利用事件API进行任务同步,并根据需要自定义事件通知机制,提升任务间通信的灵活性。
如何制作静态网站源码,相当于做任务,gonet源码解析,商家发一个任务,刷手去接,,任务完成后金币落入对方的账号。。
按你问题的询问方式,你还不适合自己去做这些事,你更应该找有经验有能力的技术团队协助你完成理想。发任务接任务,需要动态处理数据库,这个不叫静态。。。
并不是一个网站的程序就叫做源码。。。虽然你可能见过这个词见过码,但不是每个网站都叫做源码。。。
你是绝对见过代码的,你有一定的基础,所以你从心里知道这些事,并不是三言两语,三两天就可以讲的完做的完的
你需要踏踏实实实事求是的,面对这个问题,并不是你把问题说简单的了,做起来就简单了,就像有人会问:谁能简单的造个宇宙飞船我用用。。。
道理是一样的。
深度解析sync WaitGroup源码
waitGroup
waitGroup 是 Go 语言中并发编程中常用的语法之一,主要用于解决并发和等待问题。它是 sync 包下的一个子组件,特别适用于需要协调多个goroutine执行任务的场景。
waitGroup 主要用于解决goroutine间的等待关系。例如,goroutineA需要在等待goroutineB和goroutineC这两个子goroutine执行完毕后,才能执行后续的业务逻辑。通过使用waitGroup,goroutineA在执行任务时,会在检查点等待其他goroutine完成,确保所有任务执行完毕后,goroutineA才能继续进行。移动设备源码
在实现上,waitGroup 通过三个方法来操作:Add、Done 和 Wait。Add方法用于增加计数,Done方法用于减少计数,Wait方法则用于在计数为零时阻塞等待。这些方法通过原子操作实现同步安全。
waitGroup的源码实现相对简洁,主要涉及数据结构设计和原子操作。数据结构包括了一个 noCopy 的辅助字段以及一个复合意义的 state1 字段。state1 字段的组成根据目标平台的不同(位或位)而有所不同。在位环境下,state1的第一个元素是等待线程数,第二个元素是 waitGroup 计数值,第三个元素是信号量。而在位环境下,如果 state1 的地址不是位对齐的,那么 state1 的第一个元素是信号量,后两个元素分别是等待线程数和计数值。
waitGroup 的核心方法 Add 和 Wait 的实现原理如下:
Add方法通过原子操作增加计数值。当执行 Add 方法时,首先将 delta 参数左移位,然后通过原子操作将其添加到计数值上。需要注意的是,delta 的值可正可负,用于在调用 Done 方法时减少计数值。
Done方法通过调用 Add(-1)来减少计数值。
Wait方法则持续检查 state 值。当计数值为零时,表示所有子goroutine已完成,调用者无需等待。如果计数值大于零,则调用者会变成等待者,加入等待队列,并阻塞自己,直到所有任务执行完毕。
通过使用waitGroup,开发者可以轻松地协调和同步并发任务的执行,确保所有任务按预期顺序完成。这在多goroutine协同工作时,尤其重要。掌握waitGroup的使用和源码实现,将有助于提高并发编程的效率和可维护性。
如果您对并发编程感兴趣,希望持续关注相关技术更新,请通过微信搜索「迈莫coding」,城市asp 源码第一时间获取更多深度解析和实战指南。
Nacos源码之配置管理 三TaskManager 任务管理的使用
在Nacos的源码中,TaskManager是一个核心组件,它负责管理一系列必须成功执行的任务,以单线程的方式确保任务的执行。TaskManager内部包含待处理的AbstractTask集合和对应的TaskProcessor,后者是执行任务的接口,不同的任务类型需实现自己的执行逻辑。以配置中心的配置文件Dump为例,Nacos会定期将数据库中的数据备份到磁盘,这个操作通过定义的DumpTask和其对应的DumpProcessor来实现。
DumpTask定义了必要的属性,而DumpProcessor则是专门处理DumpTask的任务处理器,其核心功能是将配置文件保存到磁盘并计算MD5。类似地,DumpAllTask和DumpAllBetaTask也有对应的处理器,如DumpAllProcessor和DumpAllBetaProcessor。
DumpAllTask的任务触发和执行发生在DumpService类中,该服务负责初始化配置信息的备份。在初始化时,会创建一个DumpAllProcessor执行器,并启动一个线程,将默认执行器设置为这个处理器。此后,每隔十分钟,DumpService会向TaskManager添加一个新的DumpAllTask,由线程processingThread处理并执行。
硬核干货:4W字从源码上分析JUC线程池ThreadPoolExecutor的实现原理
深入剖析JUC线程池ThreadPoolExecutor的执行核心 早有计划详尽解读ThreadPoolExecutor的源码,因事务繁忙未能及时整理。在之前的文章中,我们曾提及Doug Lea设计的Executor接口,其顶层方法execute()是线程池扩展的基础。本文将重点关注ThreadPoolExecutor#execute()的实现,结合简化示例,逐步解析。 ThreadPoolExecutor的核心功能包括固定的核心线程、额外的非核心线程、任务队列和拒绝策略。它的设计巧妙地运用了JUC同步器框架AbstractQueuedSynchronizer(AQS),以及位操作和CAS技术。以核心线程为例,设计上允许它们在任务队列满时阻塞,或者在超时后轮询,而非核心线程则在必要时创建。 创建ThreadPoolExecutor时,我们需要指定核心线程数、app奖励源码最大线程数、任务队列类型等。当核心线程和任务队列满载时,会尝试添加额外线程处理新任务。线程池的状态控制至关重要,通过整型变量ctl进行管理和状态转换,如RUNNING、SHUTDOWN、STOP等,状态控制机制包括工作线程上限数量的位操作。 接下来,我们深入剖析execute()方法。首先,方法会检查线程池状态和工作线程数量,确保在需要时添加新线程。这里涉及一个疑惑:为何需要二次检查?这主要是为了处理任务队列变化和线程池状态切换。任务提交流程中,addWorker()方法负责创建工作线程,其内部逻辑复杂,包含线程中断和适配器Worker的创建。 Worker内部类是线程池核心,它继承自AQS,实现Runnable接口。Worker的构造和run()方法共同确保任务的执行,同时处理线程中断和生命周期的终结。getTask()方法是工作线程获取任务的关键,它会检查任务队列状态和线程池大小,确保资源的有效利用。 线程池关闭操作通过shutdown()、shutdownNow()和awaitTermination()方法实现,它们涉及线程中断、任务队列清理和状态更新等步骤,以确保线程池的有序退出。在这些方法中,可重入锁mainLock和条件变量termination起到了关键作用,保证了线程安全。 ThreadPoolExecutor还提供了钩子方法,允许开发者在特定时刻执行自定义操作。除此之外,它还包含了监控统计、任务队列操作等实用功能,每个功能的实现都是对execute()核心逻辑的扩展和优化。 总的来说,ThreadPoolExecutor的execute()方法是整个线程池的核心,它的实现原理复杂而精细。后续将陆续分析ExecutorService和ScheduledThreadPoolExecutor的源码,深入探讨线程池的扩展和调度机制。敬请关注,期待下文的详细解析。Ray 源码解析(一):任务的状态转移和组织形式
Ray源码解析系列的第一篇着重于任务的状态管理和组织形式。Ray的核心设计在于其细粒度、高吞吐的任务调度,依赖于共享内存的Plasma存储输入和输出,以及Redis的GCS来管理所有状态,实现去中心化的调度。任务分为无状态的Task和有状态的Actor Method,后者包括Actor的构造函数和成员函数。
Ray支持显式指定任务的资源约束,通过ResourcesSet量化节点资源,用于分配和回收。在调度时,需找到满足任务资源要求的节点。由于Task输入在分布式存储中,调度后需要传输依赖。对于Actor Method,其与Actor绑定,会直接调度到对应的节点。
状态变化如任务状态转移、资源依赖等信息,都存储在GCS中。任务状态更改需更新GCS,失联或宕机时,根据GCS中的状态信息重试任务。通过GCS事件订阅驱动任务状态变化。
文章主要讲述了任务状态的组织方式,如任务队列(TaskQueue)和调度队列(SchedulingQueue)的运作,以及状态转移图和状态枚举类的定义。例如,TaskQueue负责任务的增删查改,其中ReadyQueue通过资源映射优化调度决策。此外,文中还解释了一些关键概念,如Task Required Resources、Task argument、Object、Object Store、Node/Machine等。
后续文章将深入探讨调度策略和资源管理。让我们期待下篇的精彩内容。
一文读懂,硬核 Apache DolphinScheduler3.0 源码解析
全网最全大数据面试提升手册!
一、DolphinScheduler设计与策略
了解DolphinScheduler,首先需要对调度系统有基础的了解,本文将重点介绍流程定义、流程实例、任务定义与任务实例。DolphinScheduler在设计上采用去中心化架构,集群中没有Master与Slave之分,提高系统的稳定性和可用性。
1.1 分布式设计
分布式系统设计分为中心化与去中心化两种模式,每种模式都有其优势与不足。中心化设计的集群中Master与Slave角色明确,Master负责任务分发与监控Slave健康状态,Slave执行任务。去中心化设计中,所有节点地位平等,无“管理者”角色,减少单点故障。
1.1.1 中心化设计
中心化设计包括Master与Slave角色,Master监控健康状态,均衡任务负载。但Master的单点故障可能导致集群崩溃,且任务调度可能集中于Master,产生过载。
1.1.2 去中心化设计
去中心化设计中,所有节点地位平等,通过Zookeeper等分布式协调服务实现容错与任务调度。这种设计降低了单点故障风险,但节点间通信增加了实现难度。
1.2 架构设计
DolphinScheduler采用去中心化架构,由UI、API、MasterServer、Zookeeper、WorkServer、Alert等组成。MasterServer与WorkServer均采用分布式设计,通过Zookeeper进行集群管理和容错。
1.3 容错问题
容错包括服务宕机容错与任务重试。Master容错依赖ZooKeeper,Worker容错由MasterScheduler监控“需要容错”状态的任务实例。任务失败重试需区分任务失败重试、流程失败恢复与重跑。
1.4 远程日志访问
Web(UI)与Worker节点可能不在同一台机器上,远程访问日志需要通过RPC实现,确保系统轻量化。
二、源码分析
2.1 工程模块介绍与配置文件
2.1.1 工程模块介绍
2.1.2 配置文件
配置文件包括dolphinscheduler-common、API、MasterServer与WorkerServer等。
2.2 API主要任务操作接口
API接口支持流程上线、定义、查询、修改、发布、下线、启动、停止、暂停、恢复与执行功能。
2.3 Quaterz架构与运行流程
Quartz架构用于调度任务,Scheduler启动后执行Job与Trigger。基本流程涉及任务初始化、调度与执行。
2.4 Master启动与执行流程
Master节点启动与执行流程涉及Quartz框架、槽(slot)与任务分发。容错代码由Master节点监控并处理。
2.5 Worker启动与执行流程
Worker节点执行流程包括注册、接收任务、执行与状态反馈。负载均衡策略由配置文件控制。
2.6 RPC交互
Master与Worker节点通过Netty实现RPC通信,Master负责任务分发与Worker状态监控,Worker接收任务与反馈执行状态。
2.7 负载均衡算法
DolphinScheduler提供多种负载均衡算法,包括加权随机、平滑轮询与线性负载,通过配置文件选择算法。
2.8 日志服务
日志服务通过RPC与Master节点通信,实现日志的远程访问与查询。
2.9 报警
报警功能基于规则筛选数据,并调用相应报警服务接口,如邮件、微信与短信通知。
本文提供了DolphinScheduler的核心设计与源码分析,涵盖了系统架构、容错机制、任务调度与日志管理等方面,希望对您的学习与应用有所帮助。
Rust Async: smol源码分析-Executor篇
本文深入探讨了smol异步运行时中的Executor组件,尤其关注了Executor的实现细节。在smol的异步框架中,Executor扮演了核心角色,主要负责执行Future,并在多线程环境中调度和管理任务。
Executor分为三种类型:ThreadLocalExecutor、Blocking Executor、Work Stealing Executor。ThreadLocalExecutor用于处理不能实现Send特性的Future,通过使用并发和非并发队列,减少了跨线程的同步开销。Blocking Executor则允许执行阻塞任务,并通过动态地开启线程来应对任务的增加,从而提高了资源的利用率。Work Stealing Executor则通过工作窃取的方式,实现了线程间的任务负载均衡,每个工作线程通过主动调用smol::run加入工作环境。
在Executor的实现中,ThreadLocalExecutor通过线程局部变量来管理任务的生命周期,确保了任务与线程的绑定。Blocking Executor通过自适应地开启线程,以应对任务的增加或减少,从而保持了系统的高效运行。Work Stealing Executor通过工作窃取的方式,实现了任务在多个线程间的合理分配,提高了系统的整体性能。
每一个Executor的实现都紧密围绕着任务的调度、执行和管理,通过不同策略满足了不同场景下的需求。ThreadLocalExecutor适用于无法实现Send特性的Future,Blocking Executor能够应对阻塞任务的执行,而Work Stealing Executor则通过动态负载均衡实现了任务的高效分配。
在使用smol异步运行时时,需要注意到几个关键点。async_std的运行时采用了延迟实例化、按需自动启动的策略,简化了使用体验。然而,smol目前采用的是手动启用运行时的策略,可能导致运行时panic问题,用户需要额外的配置来启动整个工作窃取运行环境。因此,正确配置和启动smol运行时对于开发者来说是至关重要的。
总结而言,smol的Executor组件设计精妙,通过不同类型的Executor满足了多样化的异步任务需求。其简洁而高效的设计,使得开发者能够轻松地将现有的库进行异步化处理,极大地提高了开发效率和系统性能。未来,随着smol的发展和完善,其在异步编程领域的应用将更加广泛。
Envoy源码分析之Dispatcher
Dispatcher在Envoy中扮演着核心角色,是EventLoop的实现,负责任务队列、网络事件处理、定时器与信号处理等关键功能。其设计与Libevent库紧密集成,并通过封装与抽象,简化了内存管理。Dispatcher通过EventLoop提供了非阻塞的事件循环机制,支持多种事件类型,如FileEvent、SignalEvent、Timer等,通过继承unique_ptr来管理Libevent的C结构,利用RAII机制自动处理内存。SignalEvent通过初始化与添加事件使事件处于未决状态。Timer事件通过初始化与添加到Dispatcher中实现超时触发机制,确保在超时时执行。Envoy通过封装Libevent的事件类型,实现事件的抽象与统一处理。FileEvent封装了socket套接字相关的事件,支持主动触发与事件类型的设置。Dispatcher内部的任务队列用于调度与处理回调任务,通过post方法投递任务至队列,并通过循环运行这些任务。Envoy还引入了DeferredDeletable接口,允许对象在特定时间点被安全地析构,避免回调时对象已析构导致的野指针问题,同时确保析构操作在Dispatcher生命周期内完成,避免内存泄漏与程序崩溃。通过实现延迟析构机制,Envoy能够在回调执行前确保对象已正确析构,保障了程序的稳定性和安全性。这一设计与任务队列的实现类似,但在对象析构逻辑上有所不同,更专注于解决多线程环境下对象生命周期管理的复杂性。