1.详解三大编译器:gcc、码分llvm 和 clang
2.MacOS使用clang
3.c++反射----使用clang实现
4.一文带你梳理Clang编译步骤及命令
5.Clang概述
6.clang 学习笔记
详解三大编译器:gcc、码分llvm 和 clang
详解三大编译器:gcc、码分llvm和clang
编译器结构通常包括前端、码分优化器和后端。码分前端负责解析源代码,码分微巴人人店 源码语法分析,码分生成抽象语法树;优化器在此基础上优化中间代码,码分追求效率提升;后端则将优化后的码分代码转化为特定平台的机器码。
GNU Compiler Collection (gcc)起源于C语言编译器,码分后来扩展支持多种语言。码分然而,码分苹果公司由于对Objective-C特性和IDE需求的码分特殊性,与gcc分道扬镳,码分转而引入了LLVM。码分LLVM不仅提供编译器支持,还是一个底层虚拟机,可作为多种编译器的后端,其优点在于模块化和代码重用。
Chris Lattner,这位编译器大牛,凭借在LLVM的研究和开发,特别是他提出的编译时优化思想,使得LLVM在苹果的Mac OS X .5中大放异彩。Clang是LLVM的前端,专为C、C++和Objective-C设计,旨在替代gcc。Clang在速度、内存占用和诊断信息可读性方面优于gcc,同时支持更多的编程语言和API集成。
在选择gcc、LLVM和Clang时,最新项目推荐使用LLVM-GCC,因为它稳定且成熟,是Xcode 4的预设。然而,老版本的gcc不推荐使用,因为苹果对其维护较少。对于动态语言支持和代码重用,LLVM的特性更胜一筹,它不仅是一个编译器集合,更是库集合,为开发者提供了更大的灵活性。
总的来说,LLVM通过提供通用中间代码和模块化设计,解决了传统编译器的局限,使代码重用成为可能,这使得它在现代编译器领域中独具优势。
MacOS使用clang
本文旨在阐述在MacOS平台下使用clang命令对C++代码进行编译的商业源码免费分享过程。首先,创建文件main.cpp并编写C++代码。
使用clang++命令开始编译过程,终端显示一系列输出信息,揭示了从输入源码到最终可执行程序的编译步骤。
预处理阶段展开宏定义,词法分析解析出一个个token,包括标识符、分号等,并记录其在源码中的位置。语法分析与语义分析紧随其后,生成main.i、main.ll和汇编文件main.s。
编译过程最后生成目标文件main.o,并在此基础上生成最终的可执行文件main。运行./main命令,即可看到"Hello world"的输出结果,完成C++代码的编译执行。
c++反射----使用clang实现
LLVM 与 Clang 介绍
LLVM 是 Low Level Virtual Machine 的简称,它提供了一系列与编译器相关的支持,涵盖编译期优化、链接优化、在线编译优化及代码生成。LLVM 可以作为多种语言的后端,如 C、C++、Objective-C、Rust、Swift 等。
Clang 是一个基于 LLVM 的 C++ 编写编译器前端,由 Apple 开发,用于在不支持全部 OpenGL 特性的 GPU 上生成代码(JIT),以确保程序的正常运行。Clang 相对于 GCC 具有清晰简单的设计、易于理解与扩展的特性,并提供了易于 IDE 集成的工具,如 clang-format、clang-ast、libclang、libtooling、address sanitizer 等。
使用 Clang 实现 C++ 反射
Clang 提供了一系列 C 语言接口,用于实现反射功能。尽管这些接口提供了部分基本信息,但不能全面涵盖 Clang C++ AST 中的信息。部分 C 接口虽附有 doxygen 注释,但作为指导文档,其内容不足以覆盖所有实现细节。实现特定功能时,css源码 弹出表单开发者需自行探索。
抽象语法树(AST)解析
抽象语法树(AST)是 Clang 解析源代码生成的形式。通过相关工具导出 AST,可以实现代码分析和自动生成。以代码示例为例,经过手工分析,可以将其解析为 AST 形式。通过 Clang 命令(如 clang -Xclang -ast-dump -fsyntax-only test.hxx)打印 AST 输出,展示代码的抽象结构。
利用 AST Matcher 过滤输出
AST Matcher 可用于筛选 AST dump 的输出,获取特定信息。例如,仅打印参数类型为 std::vector 的函数声明。
反射需求分析
实现反射功能需要获取类、字段、函数等信息。通过 AST Matcher,可以过滤并获取感兴趣的部分。对于特定类、字段、函数的过滤,利用属性(Attribute)功能。
属性(Attribute)介绍
属性是程序结构的元数据,用于向编译器传递语义信息,如代码生成结构或静态分析信息。属性定义方式在不同编译器中有所不同,例如 GNU 和 Microsoft Visual C++ 的属性定义。
自定义属性实现
通过 annotate 属性作为标记,使用宏或其他方法扩展属性定义,实现自定义功能。利用 annotate 属性生成元数据,随后通过模板语言(如 Mustache)自动生成代码。
代码自动生成流程
在反射功能实现后,通过模板语言自动生成代码,构建包含反射信息的元数据。随后,通过预处理器或类似机制,将生成的代码插入原有编译流程中。
总结
利用 Clang 和 libclang 实现 C++ 反射功能,构建了自定义的反射系统。然而,系统存在模板支持不完全、libclang 局限性等问题。对于完整且严谨的反射系统,推荐直接使用 Clang 的 C++ 接口,功能更加强大,但文档相对缺乏。总之,实现 C++ 反射涉及深入理解和使用 Clang 和 libclang 的java容器源码分析功能。
一文带你梳理Clang编译步骤及命令
摘要: 本文简单介绍了Clang编译过程中涉及到的步骤和每个步骤的产物,并简单分析了部分影响预处理和编译成功的部分因素。本文简单介绍部分Clang和LLVM的编译命令。更关注前端部分(生成 IR 部分)。
1. Clang编译步骤概览我们可以使用命令打印出来Clang支持的步骤,如下:
clang-ccc-print-phasestest.c+-0:input,"test.c",c+-1:preprocessor,{ 0},cpp-output+-2:compiler,{ 1},ir+-3:backend,{ 2},assembler+-4:assembler,{ 3},object5:linker,{ 4},image根据上面的介绍,可以根据每一部分的结果,分为5个步骤(不包含上面的第0步):preprocessor、compiler、backend、assembler、linker等。
具体到 Clang 中每一步骤生成的结果文件。我们可以使用下面的示意图来表示:
说明:上面的示意图以Clang编译一个C文件为例,介绍了Clang编译过程中涉及到的中间文件类型:
(1) test.c 为输入的源码(对应步骤 0);
(2) test.i 为预处理文件(对应步骤 1 的输出,cpp-output 中,cpp 不是指 C++ 语言,而是 c preprocessor 的 缩写);
(3) test.bc 为 bitcode文件,是clang的一种中间表示(对应步骤 2 的输出);
(4) test.ll 为一种文本化的中间表示,可以打开来看的(对应步骤 2 的输出, 和 .bc 一样都是中间表示,可以相互转化);
(5) test.s 为汇编结果(对应步骤 3 的输出);
(6) test.o 为单文件生成的二进制文件(对应步骤 4 的输出);
(7) image 为可执行文件(对应步骤 5 的输出)。
注意:示意图画的也并不完整,如下介绍:
(1) 箭头所指的方向,表示可以从一种类型的文件,生成箭头所指的文件类型;
(2) 图中箭头并没有画完,比如可以从 test.c 生成 test.s, test.o 等。如果将上面的示意图当做一种 有向图,那么基于 箭头 所指的方向,只要 节点能连接的点,都是可以做转换的;
(3) 图中的实线和虚线,只是表示本人关心的Clang编译器中的内容,并没有其他的含义,本文也只介绍图中实线部分的内容,虚线部分的内容不做介绍。
2. 转换命令集合下面介绍部分涉及到上面步骤的转换命令:
#1..c->.iclang-E-ctest.c-otest.i#2..c->.bcclang-emit-llvmtest.c-c-otest.bc#3..c->.llclang-emit-llvmtest.c-S-otest.ll#4..i->.bcclang-emit-llvmtest.i-c-otest.bc#5..i->.llclang-emit-llvmtest.i-S-otest.ll#6..bc->.llllvm-distest.bc-otest.ll#7..ll->.bcllvm-astest.ll-otest.bc#8.多bc合并为一个bcllvm-linktest1.bctest2.bc-otest.bc上面列出了一部分Clang不同文件直接转换的命令(和第 1 部分的 示意图 序号匹配,还是只关心前端部分)。只是最后增加了一个将多个 bc 合并为一个 bc file 的命令。
3. 查看Clang AST结构我们可以通过如下的命令查看源码的AST结构:
clang-Xclang-ast-dump-ctest.c打印出来的AST信息,其实是预处理之后展开的源码信息,源码的AST内容在打印出来的内容的最下面。
如下面的代码:
#include<stdio.h>intmain(){ printf("hello");return0;}打印出来的部分AST(仅根当前文件内容匹配部分)如下:
头上的头文件引用等已经展开,没有了,但是下面的 main 函数定义,则如上面的 FunctionDecl 所示,并且给出了 代码中的位置。这里就不详细分析AST的结构了,写几个例子比对一下就很容易理解。
4. 编译正确性的本地头条源码影响因素当前,很多静态代码分析工具,都采用 Clang 和 LLVM 作为底座来开发静态代码分析工具。Clang自己也有 clang-tidy 工具可以用来做 C/C++ 语言的静态代码分析。为了能够用 Clang 和 LLVM 来成功分析 C/C++ 代码,需要考虑如何成功使用 Clang 和 LLVM 来编译 C/C++ 代码。可以考虑的是,成功生成 bc file,是静态代码分析的基础操作。
4.1 影响预处理结果的因素预处理过程,作用跟名字一样,都可以不当做编译的一个步骤,而是编译的一个预处理操作。我们说得再直白一点儿,其实就是做了一个文本替换的活儿,就是对 C/C++ 代码中的 预处理指令 进行处理。预处理指令很简单,比如 #include,#define 等,都是预处理指令(可以参考:/en-us/cpp/preprocessor/preprocessor-directives?view=msvc-,或者google下,很多介绍的)。
如果程序中没有预处理指令,即使我们随便瞎写的代码,预处理也一般不会有问题,如下的代码(main.c):
abcdef我们仍然可以正确得到 预处理结果:
#1"main.c"#1"<built-in>"1#1"<built-in>"3#"<built-in>"3#1"<commandline>"1#1"<built-in>"2#1"main.c"2abcdef为了成功执行预处理执行,很容易理解,就是可以对程序中的所有的 预处理指令 进行处理。比如:
(1) #include,依赖了一个头文件,我们能不能成功找到这个头文件;
(2) #define,定义了一个宏,在程序中定义宏的时候,我们能不能准确找到宏(找到,还必须准确);
(3) 其他指令。
4.2 影响IR生成因素这一步是针对上一步生成的预处理指令,进行解析的操作。这一步才是最关键的,归根结底,我们需要保证一点:使Clang编译器可以正确识别出来代码中内容表示的语法结构,并且接纳这种语法结构!
举一些简单例子:
(1) -std 用来指定支持的 C/C++ 标准的,如果我们没有指定,那么就会采用 Clang 默认的标准来编译,就可能导致语法不兼容;
(2) -Werror=* 等参数,可能将某些能识别的语法,给搞成错误的使用;
(3) 其他的部分,跟语法识别的参数;
(4) 还有一部分的语法,可能 Clang 自始至终就没有进行适配,这种就要考虑修改源码了。
4.3 链接相关因素在真正编译中,如果链接有问题,那就会失败,但是在静态代码分析中,链接有失败(无法链接)或者错误(不相关的给链接在一起),可能多点儿分析误报或者漏报,一般不会导致分析失败。这类问题,影响的不是中间表示的生成,而是分析结果(影响跨文件的过程间分析,影响对built-in函数的建模等)。
一般,链接命令的捕获,target信息配置等,会影响这部分的能力。当然,也跟你实现的工具有关(如果实现的工具,就没有跨文件的能力,这部分内容也没啥影响)。
作者:maijun。
Clang概述
LLVM项目的一个子项目,基于LLVM架构的C/C++/Objective-C编译器前端
Clang将C/C++/Object-C源码转换成LLVM IR,指令选择将LLVM IR转换成Selection DAG node(SDNode),指令调度将SDNode转换成MachineInstr,代码输出将MachineInstr转换成MCInst。
Clang的两层含义:自动调用后端程序包括预处理(preprocessing),编译(compiling),链接(linking)并生成可执行程序,将C/C++/Object-C源码编译成LLVM IR。
Compiler Driver本质是调度管理程序,Clang Driver划分成五个阶段:Parse、Pipeline、Bind、Translation、Execute。其执行过程大致如下:Driver::ExecuteCompilation -> Compilation::ExecuteJobs -> Compilation::ExecuteCommand-> Command::Execute -> llvm::sys::ExecuteAndWait。其执行过程调用相关操作系统,执行其系统相关的执行程序,并等待执行过程完成。
Clang的核心组件包括Tokens、抽象语法树(AST)、语法分析、递归下降、Precedence Climbing算法等。Tokens是通过词法分析产生的单词记号,词法分析在预处理过程中初始化。抽象语法树(AST)是语法分析的输出,表示源代码语法结构的抽象表示。递归下降解析中缀表达式语法一般有两个问题,Precedence Climbing算法的主要思想是将表达式视为一堆嵌套的子表达式,其中每个子表达式都具有其包含的运算符的最低优先级。
Clang的入口位于tools/driver/driver.cpp中的int main(int Argc, const char **Argv)函数,如果程序第一个参数是-cc1则直接执行函数static int ExecuteCC1Tool(SmallVectorImpl &ArgV),此时为前端模式,直接执行cc1_main或cc1as_mian;执行完毕后程序退出;如果不是-cc1,则进行相关命令解释,生成相容的命令行,由int Driver::ExecuteCompilation(Compilation &C,SmallVectorImpl> &FailingCommands)执行相容的命令行。
Clang通过Action完成具体的操作,CompilerInstance是一个编译器实例,综合了一个 Compiler 需要的 objects,如 Preprocessor,ASTContext,DiagnosticsEngine,TargetInfo 等。CompilerInvocation为编译器执行提供各种参数,它综合了TargetOptions、DiagnosticOptions、HeaderSearchOptions、CodeGenOptions、DependencyOutputOptions、FileSystemOptions、PreprocessorOutputOptions等各种参数。FrontendAction::ExecuteAction()是一个纯虚函数,通过继承这个方法来实现具体的Front End Action,Clang还提供了几个继承子类 ASTFrontendAction,PluginASTAction,PreprocessorFrontendAction。 Action及其派生的Action定义如下,大多数Front end Action都继承ASTFrontendAction,每一个ASTFrontendAction都会创建一个或者多个ASTConsumer,ASTConsumer也是一个纯虚类,通过继承ASTConsumer去实现特定的AST Consumer。
ASTConsumer中可以重载下面两个函数:HandleTopLevelDecl()解析顶级的声明(像全局变量,函数定义等)的时候被调用;HandleTranslationUnit()在整个文件都解析完后会被调用。大概流程如下:初始化CompilerInstance之后,调用其成员函数ExcutionAction, ExcutionAction会间接依次调用FrontendAction的6个成员函数(直接调用的是FrontendAction的三个public 接口,BeginSourceFile,Execute,EndSourceFile),而FrontendAction的ExecuteAction会最终调用语法分析函数ParseAST(未强制要求ParseAST放入ExcuteAction,但ASTFrontendAction如此)。 ParseAST在分析过程中,又会插入ASTConsumer的多个句柄(用得最多是HandleTopLevelDecl和 HandleTranslationUnit)。
Clang的Parser是通过void clang::ParseAST(Sema &S, bool PrintStats, bool SkipFunctionBodies)执行的,ParseAST()函数对个top level decleration(包括变量和函数)调用parser解析得到一颗正确的语法树。Clang使用递归下降(recursive-decent)的语法分析,具体来说,采用的是基于中缀表达式分析的precedence climbing算法。
Clang的Parser(lib/Parse和lib/AST)是通过void clang::ParseAST(Sema &S, bool PrintStats, bool SkipFunctionBodies)执行的,ParseAST()函数对个top level decleration(包括变量和函数)调用parser解析得到一颗正确的语法树。
clang 学习笔记
clang是LLVM编译器工具集的一个用于编译C、C++、Objective-C的前端,由苹果公司赞助开发,源代码采用类BSD的伊利诺伊大学厄巴纳-香槟分校开源码许可。相对于gcc,clang具有以下优势:
1. 支持更现代的C++标准,如C++、C++、C++等。
2. 代码质量更高,由于其分析更加严格,能够发现更多潜在错误。
3. 更好的类型推断,可以减少使用模板代码的需要。
4. 提供更详细的错误信息和诊断,帮助开发者快速定位问题。
然而,clang在某些方面仍需改进,比如在处理大型项目时的构建速度和内存使用效率。此外,相对于gcc,clang的社区支持和文档可能稍显不足。
要安装LLVM + clang,有二进制安装和源码安装两种方式。对于二进制安装,您可以在官网下载适合您操作系统的预编译版本。源码安装则需要下载LLVM源码,编译并配置安装。具体步骤如下:
1. 下载LLVM源码包。
2. 配置编译选项,包括指定安装路径等。
3. 使用`make`命令编译源码。
4. 使用`sudo make install`命令安装。
编译C程序使用clang与gcc类似,可以通过创建一个包含`main`函数的C源文件,使用命令行编译并链接生成可执行文件。例如:
1. 使用`gcc`或`clang`命令编译源文件。
2. 使用`./a.out`运行生成的可执行文件。
本文使用Zhihu On VSCode进行创作与发布。
Clang前端源码分析
Clang前端源码分析
Clang,作为Apple公司的一款重要编译器,旨在取代GCC的地位,其设计独特,架构分为前端、优化器和后端三部分。这种架构使得新语言编译器的开发仅需关注前端,而优化器和后端可以保持通用,适应不同架构的编译只需调整后端部分。Clang的起源是Apple为摆脱GCC的限制,由Chris Lattner主导,基于LLVM架构创建的,初衷是提供一个更清晰、易扩展和高效的选择。
在Xcode的演变中,从GCC 4.2版本后,LLVM-Clang逐渐取代了GCC的地位,尤其在Apple系统中,LLVM-Clang以其优点成为首选。Clang的模块化设计使得它在错误提示、IDE集成等方面表现优于GCC,尽管GCC支持更多语言和平台,但维护和性能不如Clang。如今,Clang在Android NDK中也逐渐占据主导,取代了部分GCC的职责,展示了其在编译领域的竞争力。
如果你想深入了解Clang的源码解析,可以关注DriverOptTable的生成机制,特别是Driver::ParseArgStrings方法,它负责将命令行参数解析为ArgList,对参数进行合法性检查,确保编译器的正确运行。通过这些细节,可以更好地理解Clang编译器参数处理的复杂性和灵活性。
C++编译器之语法分析过程
Clang是一个用于C, C++, Objective-C和Objective-C++编程语言的编译器前端。它基于LLVM后端,提供高效和高质量的代码生成。Clang的设计和实现注重三点:出色的诊断、模块化库架构以及多语言支持。
在语法分析阶段,Clang主要执行以下步骤:
1. **词法分析**:首先将源代码分解为一系列有意义的记号(token),包括关键字、标识符、常数、字符串等。
2. **语法分析**:根据语言的语法规则检查记号组合的合法性,例如C++中函数定义必须包含返回类型、函数名、参数列表和函数体。
3. **构建抽象语法树(AST)**:语法正确后,Clang构建AST,以树状结构表示代码语义结构,每个节点代表一个构造,节点间关系表示构造间的关系。
4. **语义分析**:同时检查源代码是否满足语言语义规则,如变量使用前需声明。
通过这四个步骤,Clang完成语法分析并构建AST,为后续优化和代码生成准备。
假设我们有以下C++源代码:
词法分析阶段将这段代码分解为记号,准备进行语法分析。Clang的词法分析器`clang::Lexer`负责此过程。
`clang::Lexer`的核心工作包括:
1. **读取源代码**:从预处理器获取源代码,预处理器处理预处理指令如`#include`和`#define`。
2. **识别记号**:使用词法规则识别字符序列,这些规则定义了记号类型,如关键字、标识符、字面量等。
3. **生成记号**:识别出符合词法规则的字符序列后,生成对应的记号实例。
4. **处理特殊情况**:处理转义字符、注释、宏等。
5. **重复处理**:直到所有字符被处理完毕。
6. **传递记号**:最后将记号传递给下一个阶段,用于生成抽象语法树。
理解`clang::Lexer`工作原理需要深入阅读源代码和文档。
例如,可以创建`clang::Lexer`实例来词法分析一段硬编码的C++代码。在实际应用中,通常需要处理错误和执行预处理操作。
此外,C++涉及多种高级特性,如模板、异常处理、多线程等。C++还提供了如智能指针、Boost.Asio库、序列式容器等工具,广泛应用于网络编程和并发处理。
为了深入学习C++,建议采用以下步骤:
1. **了解基础**:熟悉C++语法、数据类型和控制结构。
2. **深入高级特性**:学习模板、异常处理、多线程等。
3. **实践项目**:通过实际项目应用C++知识。
当前C++开发最热门的场景包括高性能计算、游戏开发、网络编程和系统级编程。
2024-12-22 17:24
2024-12-22 17:14
2024-12-22 16:25
2024-12-22 15:22
2024-12-22 15:21
2024-12-22 15:06