【源码内核怎么使用】【odbus 源码】【est 源码】caffe测试源码_caffe源码分析

时间:2024-12-23 06:07:02 分类:腾讯云直播源码 来源:模拟按键源码

1.海思芯片AI模型转换环境配置(MindStudio+ATC)
2.caffe 中为什么bn层要和scale层一起使用
3.st-gcn环境搭建
4.Caffe学习(二) —— 下载、试源编译和安装Caffe(源码安装方式)

caffe测试源码_caffe源码分析

海思芯片AI模型转换环境配置(MindStudio+ATC)

       在配置海思芯片AI模型转换环境时,源码直接在服务器上安装配置可能引发冲突,分析因此推荐在Docker环境中部署转换工具,试源以确保良好的源码隔离性,避免不同开发环境间的分析源码内核怎么使用相互影响。以下是试源在Ubuntu容器中部署海思芯片模型转换相关工具的步骤:

       首先,拉取Ubuntu .的源码Docker镜像,检查当前已有的分析镜像。

       然后,试源创建一个容器并运行,源码该容器将提供可视化界面,分析便于操作。试源

       部署CANN环境,源码为后续使用海思芯片做好硬件准备。分析odbus 源码

       安装MindStudio,这是一个用于AI模型开发和调试的集成开发环境。

       接下来,安装模型压缩量化工具(如caffe),用于优化模型大小与性能。

       部署caffe框架,确保与MindStudio的兼容性。

       安装Caffe源代码增强包,扩展caffe的功能与性能。

       执行量化操作,通过caffe优化模型的精度与运行效率。

       模型转换采用图形开发方式与命令行开发方式,灵活适应不同需求。

       完成模型转换后,est 源码进行板端程序编译,确保模型可在海思芯片上正确运行。

       同步推理过程,验证模型转换效果。

       如果需要,安装模型压缩量化工具(如pytorch),并执行量化操作,以进一步优化模型。

       参考《模型压缩工具使用指南(PyTorch).pdf》中第3章内容,深入了解PyTorch量化操作。

       配置aiitop sample打包环境,为模型部署做准备(可选)。

       容器中配置SSH连接,实现远程访问与管理(可选)。thvtrix 源码

       容器导出镜像,方便在不同环境中复用(可选)。

       遇到问题时,查阅FAQ寻求解决方案。

       本文使用Zhihu On VSCode完成撰写与发布。

caffe 中为什么bn层要和scale层一起使用

       1) 输入归一化 x_norm = (x-u)/std, 其中u和std是个累计计算的均值和方差。

       2)y=alpha×x_norm + beta,对归一化后的x进行比例缩放和位移。其中alpha和beta是通过迭代学习的。

       é‚£ä¹ˆcaffe中的bn层其实只做了第一件事,scale层做了第二件事,所以两者要一起使用。

       ä¸€ï¼Œåœ¨Caffe中使用Batch Normalization需要注意以下两点:

       1. 要配合Scale层一起使用。

       2. è®­ç»ƒçš„时候,将BN层的use_global_stats设置为false,然后测试的时候将use_global_stats设置为true。

       äºŒï¼ŒåŸºæœ¬å…¬å¼æ¢³ç†ï¼š

       Scale层主要完成 top=alpha∗bottom+betatop=alpha∗bottom+beta的过程,则层中主要有两个参数alphaalpha与betabeta,

       æ±‚导会比较简单。∂y∂x=alpha;∂y∂alpha=x;∂y∂beta=1。 需要注意的是alphaalpha与betabeta均为向量,针对输入的channelschannels进行的处理,因此不能简单的认定为一个floatfloat的实数。

       ä¸‰ï¼Œå…·ä½“实现该部分将结合源码实现解析scalescale层:

       åœ¨Caffe proto中ScaleParameter中对Scale有如下几个参数:

       1,基本成员变量,基本成员变量主要包含了Bias层的参数以及Scale层完成对应通道的标注工作。

       2,基本成员函数,主要包含了LayerSetup,Reshape ,Forward和Backward ,内部调用的时候bias_term为true的时候会调用biasLayer的相关函数。

       3,Reshape 调整输入输出与中间变量,Reshape层完成许多中间变量的size初始化。

       4,Forward 前向计算,前向计算,在BN中国紧跟着BN的归一化输出,完成乘以alpha与+bias的操作,由于alpha与bias均为C的向量,因此需要先进行广播。

       5,Backward 反向计算,主要求解三个梯度,对alpha 、beta和输入的bottom(此处的temp)。

st-gcn环境搭建

       搭建ST-GCN环境的步骤如下:

       一、硬件与系统准备

       推荐使用基于Ubuntu .的系统,可从浙大官网下载稳定版本的镜像。通过U盘启动制作Ubuntu系统盘,完成格式化后使用深度制作工具进行系统安装。在桌面计算机中使用磁盘管理工具创建Ubuntu分区,一般GB空间足矣。通过BIOS设置将U盘设置为启动优先项,然后开始安装Ubuntu系统。视窗源码

       二、安装Python3

       在Ubuntu系统中,将Python3设置为默认版本,使用pip进行包管理无需额外命令。在终端中通过快捷键或命令行操作完成Python3的安装。

       三、软件源配置

       使用国内服务器作为Ubuntu软件源,推荐使用阿里云提供的服务,无需额外配置。如果使用官方镜像,可能需要更新软件源以获取最新软件包。

       四、安装显卡驱动

       使用NVIDIA显卡的用户,需安装对应版本的驱动程序。通过三种方法之一:官方PPA源安装、下载并编译安装、添加官方PPA源后安装。

       五、安装CUDA和cuDNN

       检查NVIDIA显卡型号和系统内核版本,确保CUDA版本与驱动匹配。下载CUDA和cuDNN,按步骤安装,确保安装成功并验证。

       六、安装Python3的pip虚拟环境

       在Python3环境下安装pip,所有pip命令都将在Python3环境中执行。创建虚拟环境管理目录,将虚拟环境添加到环境变量中,并创建Python3虚拟环境。

       七、安装torch和torchvision

       使用国内源安装torch和torchvision,可永久修改pip安装源。查看Python版本与对应torch版本的关系,确保兼容性。

       八、安装cmake

       使用cmake配置编译参数,安装cmake和cmake-gui,确保cmake操作顺利进行。

       九、安装opencv

       可以选择通过apt-get安装opencv-python或从源码构建。构建时注意解压、更新依赖、下载ippicv,确保opencv功能齐全。

       十、安装caffe

       从openpose提供的链接下载caffe源码,解压后修改Makefile配置参数,编译安装。

       十一、安装openpose

       在caffe目录下连接openpose,下载源码,配置编译参数,确保兼容性和接口接入,测试安装成功。

       十二、安装ffmpeg

       下载ffmpeg源码,安装依赖环境,配置并编译安装。推荐使用smplayer作为视频播放软件。

       完成上述步骤后,环境搭建就已基本完成。评估官方模型,训练自己的模型,进行样本示例展示。安装视频播放软件,如smplayer,用于观看可视化效果。欢迎指出错误与建议,祝您搭建成功!

Caffe学习(二) —— 下载、编译和安装Caffe(源码安装方式)

       采用caffe源码编译安装方式说明

       此方法仅适用于编译CPU支持版本的Caffe。推荐通过Git下载以获取更新及查看历史变更。

       主机环境配置

       系统环境:Ubuntu .

       步骤一:安装依赖库与Python 2.7

       步骤二:安装CUDA(注意:虽然仅编译CPU版本的Caffe,但安装CUDA时可能会遇到编译错误,需确保环境兼容性)

       编译Caffe

       步骤一:修改Make.config文件

       具体配置说明请参考我的另一篇博客("Hello小崔:caffe(master分支)Makefile.config分析")

       步骤二:执行make编译

       测试已通过

       步骤三:解决编译过程中的错误

       错误实例:ImportError: No module named skimage.io

       解决方法:执行sudo apt-get install python-skimage

       错误实例:ImportError: No module named google.protobuf.internal

       解决方法:执行sudo apt-get install python-protobuf

       更多错误解决办法,请参阅另一篇博客("Hello小崔:caffe编译报错解决记录")