【fastpay系统源码】【网络企业源码】【arduino源码加密】arrayblocking源码

时间:2024-12-22 22:59:37 编辑:洗衣机有溯源码吗 来源:点击自动复制源码

1.arrayblockingԴ??
2.LinkedBlockingQueue
3.深入理解条件变量Condition
4.从源码全面解析 LinkedBlockingQueue的来龙去脉

arrayblocking源码

arrayblockingԴ??

       引言

       本文将详细解读Java中常见的5种BlockingQueue阻塞队列,包括它们的优缺点、区别以及典型应用场景,以帮助深入理解这5种队列的独特性质和使用场合。

       常见的BlockingQueue有以下5种:

       1. **基于数组实现的阻塞队列**:创建时需指定容量大小,是fastpay系统源码有限队列。

       2. **基于链表实现的阻塞队列**:默认无界,可自定义容量。

       3. **无缓冲阻塞队列**:生产的数据需立即被消费,无缓冲。

       4. **优先级阻塞队列**:支持元素按照大小排序,无界。

       5. **延迟阻塞队列**:基于PriorityQueue实现,无界。

       **BlockingQueue简介

**

       BlockingQueue作为接口,定义了放数据和取数据的网络企业源码多组方法,适用于并发多线程环境,特别适合生产者-消费者模式。

       **应用场景

**

       BlockingQueue的作用类似于消息队列,用于解耦、异步处理和削峰,适用于线程池的核心功能实现。

       **区别与比较

**

       - **ArrayBlockingQueue**:基于数组实现,容量可自定义。

       - **LinkedBlockingQueue**:基于链表实现,无界或自定义容量。

       - **SynchronousQueue**:同步队列,生产者和消费者直接交互,无需缓冲。

       - **PriorityBlockingQueue**:实现优先级排序,无界队列。arduino源码加密

       - **DelayQueue**:本地延迟队列,支持元素延迟执行。

       在选择使用哪种队列时,需考虑具体任务的特性、吞吐量需求以及是否需要优先级排序或延迟执行。

       本文旨在提供全面理解Java中BlockingQueue的指南,从源码剖析到应用场景,帮助开发者更好地应用这些工具于实际项目中。

LinkedBlockingQueue

        LinkedBlockingDeque在结构上有别于之前讲解过的阻塞队列,它不是Queue而是Deque,中文翻译成双端队列,双端队列指可以从任意一端入队或者出队元素的队列,实现了在队列头和队列尾的高效插入和移除

        LinkedBlockingDeque是链表实现的线程安全的无界的同时支持FIFO、LIFO的双端阻塞队列,可以回顾下之前的LinkedBlockingQueue阻塞队列特点,本质上是类似的,但是又有些不同:

        Queue和Deque的关系有点类似于单链表和双向链表,LinkedBlockingQueue和LinkedBlockingDeque的内部结点实现就是单链表和双向链表的区别,具体可参考源码。

        在第二点中可能有些人有些疑问,两个互斥锁和一个互斥锁的区别在哪里?我们可以考虑以下场景:

        A线程先进行入队操作,B线程随后进行出队操作,如果是LinkedBlockingQueue,A线程入队过程还未结束(已获得锁还未释放),B线程出队操作不会被阻塞等待(锁不同),如果是LinkedBlockingDeque则B线程会被阻塞等待(同一把锁)A线程完成操作才继续执行

        LinkedBlockingQueue一般的操作是获取一把锁就可以,但有些操作例如remove操作,则需要同时获取两把锁,之前的LinkedBlockingQueue讲解曾经说明过

        LinkedBlockingQueue 由于是单链表结构,只能一端操作,读只能在头,写只能在尾,因此两把锁效率更高。LinkedBlockingDeque 由于是双链表结构,两端头尾都能读写,因此只能用一把锁保证原子性。 当然效率也就更低

        ArrayBlockingQueue

        LinkedBlockingQueue

        问题,为什么ArrayBlockingQueue 不能用两把锁

        因为取出后,ArrayBlockingQueue 的元素需要向前移动。

        LinkedBlockingQueue内部由单链表实现,只能从head取元素,从tail添加元素。添加元素和获取元素都有独立的锁,也就是说LinkedBlockingQueue是读写分离的,读写操作可以并行执行。LinkedBlockingQueue采用可重入锁(ReentrantLock)来保证在并发情况下的线程安全。

        LinkedBlockingQueue一共有三个构造器,分别是无参构造器、可以指定容量的构造器、可以穿入一个容器的构造器。如果在创建实例的时候调用的是无参构造器,LinkedBlockingQueue的默认容量是Integer.MAX_VALUE,这样做很可能会导致队列还没有满,但是内存却已经满了的情况(内存溢出)。

        size()方法会遍历整个队列,时间复杂度为O(n),所以最好选用isEmtpy

        1.判断元素是否为null,为null抛出异常

        2.加锁(可中断锁)

        3.判断队列长度是否到达容量,如果到达一直等待

        4.如果没有队满,enqueue()在队尾加入元素

        5.队列长度加1,此时如果队列还没有满,调用signal唤醒其他堵塞队列

        1.加锁(依旧是ReentrantLock),注意这里的锁和写入是不同的两把锁

        2.判断队列是否为空,如果为空就一直等待

        3.通过dequeue方法取得数据

        3.取走元素后队列是否为空,如果不为空唤醒其他等待中的队列

        原理:在队尾插入一个元素, 如果队列没满,立即返回true; 如果队列满了,立即返回false。

        原理:如果没有元素,直接返回null;如果有元素,出队

        1、具体入队与出队的原理图:

        图中每一个节点前半部分表示封装的数据x,后边的表示指向的下一个引用。

        1.1、初始化

        初始化之后,初始化一个数据为null,且head和last节点都是这个节点。

        1.2、入队两个元素过后

        1.3、出队一个元素后

        表面上看,只是将头节点的next指针指向了要删除的x1.next,事实上这样我觉的就完全可以,但是jdk实际上是将原来的head节点删除了,而上边看到的这个head节点,正是刚刚出队的x1节点,只是其值被置空了。

        2、三种入队对比:

        3、三种出队对比:

深入理解条件变量Condition

       深入理解条件变量Condition

       在并发编程中,条件变量(Condition)是管理线程等待和通知的一种重要工具,尤其在使用可重入锁(ReentrantLock)时,Condition提供了更加灵活的等待和唤醒机制。相比于synchronized关键字的内置等待/唤醒机制,Condition允许线程在特定条件满足时再继续执行,提高了代码的游戏源码空间可读性和可维护性。

       让我们通过一个简单的Demo来了解Condition的基本用法。假设我们有两个线程:一个负责等待特定条件,另一个负责通知条件满足。在使用Condition时,我们通常将等待线程调用`await()`方法,进入等待状态,直到另一个线程调用`signal()`方法通知条件满足,等待线程才会被唤醒。

       Condition与ReentrantLock的结合使我们能够实现更高级的同步控制。比如,在Java的并发工具包中,ArrayBlockingQueue就利用了Condition来管理队列的空/满状态。通过两个条件变量:一个用于检测队列是否为空,另一个用于检测队列是否已满,队列的mfc源码 调试入队和出队操作会根据当前队列状态调用相应的Condition,实现线程间的高效同步。

       此外,Condition在Kafka的BufferPool中也有应用。BufferPool管理内存分配和回收时,也需要确保线程间的同步。Condition在此场景下的使用,保证了内存操作的正确顺序,避免了竞态条件,提高了系统的稳定性和性能。

       接下来,我们深入分析Condition的实现细节。Condition的核心实现基于可重入锁(ReentrantLock),其内部类ConditionObject封装了Condition的主要功能。通过`await()`和`signal()`方法,ConditionObject实现了等待和通知机制。在等待时,调用线程会释放锁,进入等待队列;当有线程调用`signal()`方法时,等待队列中的线程会被唤醒,并重新获得锁,继续执行。

       在Linux环境下,条件变量机制同样用于实现线程间同步,其基本原理与Java中的Condition相似。在等待条件满足时,线程会原子地释放锁,进入等待状态,直到其他线程通过适当的机制(如信号量、事件等)通知它,线程才会被唤醒并重新获取锁。

       如果你想更深入地了解Condition的实现以及相关原理,可以阅读以下资源:

       1. **可重入锁 ReentrantLock 源码阅读**:深入理解ReentrantLock的实现,包括ConditionObject的细节。

       2. **pthread_cond_wait**:了解Linux环境下条件变量的使用方法。

       3. **《Unix高级环境编程》**:书中关于线程和同步机制的章节提供了丰富的理论背景。

从源码全面解析 LinkedBlockingQueue的来龙去脉

       并发编程是互联网技术的核心,面试官常在此领域对求职者进行深入考察。为了帮助读者在面试中占据优势,本文将解析 LinkedBlockingQueue 的工作原理。

       阻塞队列是并发编程中常见的数据结构,它在生产者和消费者模型中扮演重要角色。生产者负责向队列中添加元素,而消费者则从队列中取出元素。LinkedBlockingQueue 是 Java 中的一种高效阻塞队列实现,它底层基于链表结构。

       在初始化阶段,LinkedBlockingQueue 不需要指定队列大小。除了基本成员变量,它还包含两把锁,分别用于读取和写入操作。有读者疑惑,为何需要两把锁,而其他队列只用一把?本文后续将揭晓答案。

       生产者使用 `add()`、`offer()`、`offer(time)` 和 `put()` 方法向队列中添加元素。消费者则通过 `remove()`、`poll()`、`poll(time)` 和 `take()` 方法从队列中获取元素。

       在解析源码时,发现 LinkedBlockingQueue 与 ArrayBlockingQueue 在锁的使用上有所不同。ArrayBlockingQueue 使用互斥锁,而 LinkedBlockingQueue 使用读锁和写锁。这是否意味着 ArrayBlockingQueue 可以使用相同类型的锁?答案是肯定的,且使用两把锁的 ArrayBlockingQueue 在性能上有所提升。

       流程图展示了 LinkedBlockingQueue 和 ArrayBlockingQueue 之间的相似之处。有兴趣的读者可以自行绘制。

       总结而言,LinkedBlockingQueue 是一种高效的阻塞队列实现,其底层结构基于链表。它通过读锁和写锁管理线程安全,为生产者和消费者提供了并发支持。通过优化锁的使用,LinkedBlockingQueue 在某些场景下展现出更好的性能。

       互联网寒冬虽在,但学习和分享是抵御寒冬的最佳方式。通过交流经验,可以减少弯路,提高效率。如果你对后端架构和中间件源码感兴趣,欢迎与我交流,共同进步。

搜索关键词:java面试源码分析