皮皮网

【jsp采购源码】【免费新闻头条源码】【ea源码比较多】rtp 排序 源码

时间:2024-12-22 22:04:32 来源:浏览器获取网站源码 作者:计算第几周源码

1.从零开始写一个RTSP服务器(五)RTP传输AAC
2.Miracast技术详解(四):Sink源码解析
3.ZLMediaKit 服务器源码解读---RTSP推流拉流
4.RTSP流媒体服务器的序源搭建与测试《带源码》
5.WebRTC 源码分析——Android 视频硬件编码
6.unimrcpclient源码分析mrcp components

rtp 排序 源码

从零开始写一个RTSP服务器(五)RTP传输AAC

       本文目标:实现通过VLC播放SDP文件并听到AAC音频。

       1. RTP封装与发送

       虽然前面已介绍过,序源但为了回顾,序源这里再次提及。序源RTP数据包由头部和载荷组成,序源我们构建了一个结构体来代表RTP头部,序源jsp采购源码并创建了发送包的序源函数。RTP头部的序源细节请参考之前关于RTSP协议的文章。

       下面是序源RTP包和发送函数的实现,其中使用htons函数来确保网络字节序(大端模式)的序源正确性:

       rtp.h 和 rtp.c 文件在此部分频繁使用。

       2. AAC RTP打包

       AAC音频以ADTS帧的序源形式存在,每个ADTS帧有特定的序源7字节头部,包含了帧大小信息。序源将AAC帧的序源头部和数据分开,仅保留AAC数据部分,序源每帧打包成一个RTP包。RTP载荷前四个字节有特殊含义,后面是AAC数据,大小在第三个和第四个字节中用位表示。

       3. AAC SDP媒体描述

       媒体描述的SDP格式包括"M="行,指定音频类型、端口、传输协议和负载类型。例如,`m=audio RTP/AVP `,表示音频流使用号负载类型(AAC)。详细SDP内容可参考RTSP协议讲解。

       4. 测试与操作

       将源代码(rtp.c、rtp.h 和 rtp_aac.c)与sdp文件(rtp_aac.sdp) 保存,使用test.aac作为音频源。编译并运行程序,确保运行时的免费新闻头条源码IP地址与SDP中指定的目标地址一致,然后通过VLC加载SDP文件,即可听到音频。后续文章将介绍如何构建完整的AAC RTSP发送服务器。

Miracast技术详解(四):Sink源码解析

       Miracast Sink端源码最早出现在Android 4.2.2版本中,可通过android.googlesource.com查看。然而,在Android 4.3版本之后,Google移除了这部分源码,详细移除记录可在android.googlesource.com上查阅。尽管Sink端代码被移除,但Source端源码依然存在。通过使用Android手机的投射功能,仍可实现Miracast投屏发送端的功能。

       为了查看源码,推荐使用Android Studio,以便利用IDE的代码提示和类/方法跳转功能。首先新建一个Native Project,将libstagefright相关源码拷贝至cpp目录,并导入必要的include头文件。在CMakeLists.txt中添加这部分源码后,同步环境,以此引用相关类与头文件,提升查看源码的效率。

       Sink端核心类主要包括:WifiDisplaySink.cpp、RTPSink.cpp、TunnelRenderer.cpp。通过分析可得知,初始化操作主要在wfd.cpp中的main()方法内完成,重点关注sink->start()方法启动WifiDisplaySink,进而使用ip和端口参数执行相关操作。

       RTSP通讯涉及关键步骤,ea源码比较多包括创建RTSP TCP连接、处理连接状态与数据异步通知。当连接建立后,开始进行RTSP协商与会话建立,处理RTSP M1-M7指令。请求与响应流程需参考前面的RTSP协议分析文章,这里不详细展开。

       处理RTSP消息时,首先判断消息类型,是Request还是Response。对于Request,主要处理Source端M1请求,并响应M2确认。对于Source端M3请求,处理相关属性及能力,如RTP端口号、支持的音频和视频编解码格式等。M4与M5请求则分别进行常规的响应处理。

       在发送完Setup M6请求后,注册onReceiveSetupResponse()回调,用于完成RTSP最后一步,即发送PLAY M7请求。此时,Source端会按照Sink指定的UDP端口发送RTP数据包,包含音视频数据。

       RTSP协商与会话建立完成后,数据流通过RTPSink处理,建立UDP连接并解析RTP数据包。在TunnelRenderer中接收并播放音视频流。流程包括消息处理、环境初始化、网页源码能否修改TS包解析、音视频裸流解码与播放等。

       源码解析过程中,关键步骤包括初始化RTPSink、建立UDP连接、处理RTP与RTCP数据、解析TS包并获取音视频裸流等。移植Native Sink端难点在于隔离与处理Native相关依赖,如异步消息机制、网络连接实现等。建议在应用层实现RTSP连接、音视频解码与渲染功能,然后移植底层解析代码,以减少依赖,提高移植效率。

ZLMediaKit 服务器源码解读---RTSP推流拉流

       RTSP推流与拉流在ZLMediaKit服务器源码中有着清晰的解析过程和处理逻辑。数据解析通过回调到达RtspSession类的onRecv函数,进而进行分包处理,头部数据与内容分离。根据头部信息判断数据包类型,rtp包与rtsp包分别由onRtpPacket和onWholeRtspPacket函数处理。

       RTSP处理过程中,解析出的交互命令被分发至不同的处理函数。对于rtp包处理,数据封装成rtp包后,执行onBeforeRtpSorted函数进行排序,排序后的数据放入缓存map,最终回调到RtspSession的onRtpSorted函数。这里,回调数据进入RtspMediaSourceImp成员变量,该变量指向RtspDemuxer解复用器,下载网页源码视频用于H等视频格式的解复用。

       在H解复用器中,rtp包经过一系列处理后,由HRtpDecoder类的decodeRtp函数转化为H帧数据,最终通过RtpCodec::inputFrame函数分发至代理类。代理类在处理H帧数据时,分包并添加必要参数(如pps、sps信息),然后通过map对象将数据传递给多个接收者。

       处理完H帧后,数据将流转至编码阶段。在RtspMediaSourceImp中,H帧数据被传递至MultiMediaSourceMuxer编码类。在编码过程中,数据通过RtspMuxer的inputFrame接口进入编码器HRtpEncoder,最后被打包成rtp包,准备分发。

       总结而言,RTSP推流过程主要包含数据解析、视频解复用与编码三个关键步骤。在拉流阶段,通过鉴权成功后获取推流媒体源,利用play reader从缓存中取出rtp包并发送给客户端。

RTSP流媒体服务器的搭建与测试《带源码》

       搭建与测试RTSP流媒体服务器,通过C++实现,支持Linux和Windows编译环境,使用VLC客户端进行测试,功能包括RTSP的多种操作、SDP生成、RTP打包和TS文件解析,附带源码分析文档。

       新增功能包括:

       别名功能:通过替换真实的文件名和路径,以更友好、更短的URL发布资源,增强用户体验。

       内容缓存:在多台服务器间传输多媒体文件,提升客户播放内容品质,节约传输成本,优化内容交付路径。

       定制日志:灵活定义信息捕捉规则与时间,支持默认模板或自定义模板,便于系统报告生成。

       SLTA功能:模拟直播传输代理,支持多种流媒体格式,提供更强大的发布方式,实现流媒体直播体验。

       RTSP缓存指示:控制哪些内容应被缓存在Helix Universal Server,提供更大缓存灵活性。

       冗余服务:为内容发布提供等级选择,确保在RealOne Player断开后,可切换至另一服务器连接,保证播放连续性。

       Windows Media流媒体支持:通过MMS协议或HTTP协议向Windows Media Player传输流媒体,支持与Windows Media Encoder的连接,实现多格式流媒体发布。

       MPEG流媒体支持:发布MPEG-1、MPEG-2、MP3及MPEG-4格式内容,确保多种音频与视频格式的兼容性。

       智能流:在保证带宽的前提下,使用智能流优化Real音频或Real视频广播,确保客户端接收合适的码率。

       RealOne Player统计:增强客户统计状态,返回更详细信息,利用TurboPlay功能优化播放体验。

       搭建网络直播电视,支持多种流媒体格式,如音频文件(RealAudio、Wav、Au、MPEG等)、视频文件(RealVideo、AVI、QuickTime等)及其他类型内容,通过Helix Producer将不支持的文件转换为可支持的格式。

       提供多种服务模式,包括点播、直播与模拟直播,满足不同场景需求。Linux环境下安装配置,包括域名或IP地址绑定、加载点配置、服务器连接控制、访问控制与服务器监控,确保系统稳定运行。

       RTSP流媒体服务器通过避免视频文件被浏览器通过HTTP下载,优化了内容传输效率。建议在中小型视频点播服务中使用RAID 5,以提升数据安全性和读取速度,同时控制成本。提供丰富文档、问题解答、学习资源、资料视频与源码分享,支持C/C++、Linux、Nginx、golang等技术栈学习与实践。

WebRTC 源码分析——Android 视频硬件编码

       本文深入剖析了 WebRTC 在 Android 平台上的视频硬件编码机制。首先,回顾了 MediaCodec 的概念和基础使用,这是Android中用于处理音频和视频数据的关键组件。MediaCodec 支持编码(将原始数据转换为压缩格式)和解码(将压缩数据转换回原始格式),通常与MediaExtractor、MediaSync、MediaMuxer、MediaCrypto、MediaDrm、Image、Surface等组件一起使用。

       接下来,文章探讨了WebRTC 如何利用硬件编码器。通过 DefaultVideoEncoderFactory 和 HardwareVideoEncoderFactory 的交互,WebRTC 实现了 h 编码器的初始化和配置。在代码实现中,我们关注了 MediaCodec 的输入和输出缓冲区、编码器工作模式以及 MediaCodec 与 Surface 的关系,这些是理解整个编码流程的关键点。

       在编码器初始化的部分,通过 DefaultVideoEncoderFactory 的 createEncoder 函数,实例化了 HardwareVideoEncoder。调用栈显示,这一过程主要在 native 端完成,通过 jni 调用 Java 端代码来获取当前设备支持的编码器信息。

       编码数据送入编码器的过程涉及到 VideoEncoder 接口,WebRTC 使用 HardwareVideoEncoder 实现了这一接口,利用 MediaCodec 进行编码。通过 EglBase 和 OpenGL ES 的集成,WebRTC 将 VideoFrame 对象转换为与 MediaCodec 关联的 Surface 的纹理。这一过程确保了编码器接收到了正确的视频数据格式。

       获取编码后的数据时,WebRTC 使用 MediaCodec 的同步模式进行获取。当数据可用时,通过 callback.onEncodedFrame(encodedImage, new CodecSpecificInfo()) 方法告知引擎,引擎负责进一步处理编码后的帧,如封装 RTP 包和发送到对端。

       码流控制方面,WebRTC 包括拥塞控制和比特率自适应两个主要方面。当比特率发生变化时,WebRTC 会调用 VideoEncoder.setRateAllocation() 方法来更新比特率。在编码过程中,通过特定的代码逻辑来判断并调整当前的码率与所需码率是否匹配,以适应网络条件的变化。

       本文以几个疑问的方式从源码角度详细解析了整个编码流程,包括从 MediaCodec 的创建和配置、视频数据的编码到编码后的数据获取和码流控制等关键步骤。通过深入分析,希望读者能够更好地理解 WebRTC 在 Android 平台上的编码技术。

       为了进一步加深对 Android 音视频核心知识点的理解,推荐访问以下链接:/Ei3VPD。

unimrcpclient源码分析mrcp components

       配置样例包含六个部分。

       函数unimrcp_client_components_load主要负责这六个组件的加载,下面详细解析各个组件的加载过程。

       加载resource组件时,其结构体mrcp_resource_t定义在mrcp_resource.h,字符串使用apt_str_table_item_t(定义在mrcp_resource_loader.c),mrcp_resource_loader_t和mrcp_resource_factory_t分别位于mrcp_resource_loader.c和mrcp_resource_factory.c。构造mrcp_resource_loader内部是mrcp_resource_factory_t *factory,factory通过mrcp_resource_factory_create构建,参数为MRCP_RESOURCE_TYPE_COUNT的第5个值,整型值为4。

       加载sip-uac组件时,mrcp_sofia_client_config_t结构体(mrcp_sofiasip_client_agent.c)应用于sofia sip协议栈。默认端口和名称设定如下:config->local_port = DEFAULT_SIP_PORT; 默认端口为,config->user_agent_name = DEFAULT_SOFIASIP_UA_NAME; 默认agent name为UniMRCP SofiaSIP,config->origin = DEFAULT_SDP_ORIGIN; 默认sdp origin为UniMRCPClient。IP地址配置通过unimrcp_client_ip_address_get(unimrcp_client.c)实现,可配置为“auto”或“iface”。然后使用mrcp_sofiasip_client_agent_create(mrcp_sofiasip_client_agent.c)创建sofiasip_client。

       加载rtsp-uac组件时,指代MRCPv1版本的uac组件。rtsp_client_config_t结构体(mrcp_unirtsp_client_agent.h)用于配置。组件加载通过unimrcp_client_rtsp_uac_load函数完成。

       加载media-engine组件时,配置项仅包含realtime_rate。unimrcp_client_media_engine_load函数负责加载此组件。mpf_engine_t结构体(mpf_engine.c)用于创建mpf_engine,使用mpf_engine_create函数。

       加载rtp-factory组件时,mpf_rtp_config_t结构体(mpf_rtp_descriptor.h)包含可配置项。unimrcp_client_rtp_factory_load函数用于加载此组件,并通过mpf_rtp_termination_factory_create(mpf_rtp_termination_factory.c)创建相应的工厂。

关键词:ios仿今日头条源码
热点关注

copyright © 2016 powered by 皮皮网   sitemap