皮皮网
皮皮网

【apl语言源码】【速度pid控制源码】【dnf全屏攻击源码】启动源码分析_启动源码分析方法

来源:售卖商城源码 发表时间:2024-12-23 06:46:45

1.Tomcat源码分析— Bootstrap启动流程
2.Android Activity Deeplink启动来源获取源码分析
3.Nginx源码分析 - 主流程篇 - Nginx的启动启动启动流程
4.YARN源码剖析:NM启动过程
5.头秃了,二十三张图带你从源码了解SpringBoot启动流程!源码源码
6.SRS(simple-rtmp-server)流媒体服务器源码分析--启动

启动源码分析_启动源码分析方法

Tomcat源码分析— Bootstrap启动流程

       在探讨Tomcat启动流程之前,分析分析方法需要理解其组件及其周期状态,启动启动这为后续深入学习组件初始化与启动等提供了基础。源码源码

       实现Lifecycle接口的分析分析方法apl语言源码组件拥有种状态。Bootstrap作为Tomcat启动入口类,启动启动负责构造类加载器以加载Catalina内部类,源码源码通过查找catalina.home目录下所有jar包,分析分析方法确保安全地加载应用程序类。启动启动

       通过Bootstrap的源码源码main方法启动Tomcat实例,主要步骤包括创建Bootstrap对象、分析分析方法调用init方法,启动启动并根据启动参数执行load和start方法。源码源码

       Bootstrap的分析分析方法init方法初始化类加载器,使得Tomcat能加载应用程序类,同时设置当前线程上下文加载器为CatalinaLoader。initClassLoaders方法创建三种类加载器,其中catalinaLoader与sharedLoader的父加载器为commonLoader。完成初始化后,预加载tomcat和javax包下的自定义类,避免访问权限异常。

       调用catalinaLoader加载器加载Catalina类,通过反射实例化对象,并设置sharedLoader实例作为入参,最后将实例化的Catalina对象赋予catalinaDaemon成员变量。

       Tomcat组件的初始化主要在load方法中完成,通过反射调用Catalina的load方法,构建并初始化StandardServer及其子组件。Bootstrap.load方法通过反射调用Catalina的load方法,Catalina的load方法实现序列图中的逻辑,初始化配置文件解析器Digester,构建standardServer实例,绑定当前catalina实例,设置根路径,并调用init方法完成初始化。

       Tomcat中的容器或组件使用模板方法设计模式,子类通过重写LifecycleBase抽象类的模板方法initInternal实现初始化逻辑。LifecycleBase的init方法主要完成两件事:调用父类的LifecycleBase#init方法,由standerServer#initInternal方法执行实际初始化。速度pid控制源码init方法逻辑包括:执行LifecycleBase#initInternal抽象方法,由standardServer#initInternal方法完成初始化。

       service组件的init方法主要初始化Connector连接器,连接器的初始化尤为重要。不同协议处理器如AjpAprProtocol、HttpNioProtocol的初始化流程将在后续文章中单独讲解。

       Bootstrap类的main方法通过反射执行catalina实例的start方法,启动standardServer实例,使其监听端口并接收新请求。start方法主要逻辑包括启动Service、Engine容器、Executor执行器、MapperListener监听器、Connector连接器等组件。当启动成功后,创建并监听端口,Tomcat对外提供服务。

       总结,Tomcat的启动流程清晰且依赖模板方法与责任链设计模式,理解这两种模式有助于更好地理解启动过程及代码。启动过程首先初始化各组件,如Server、Service、Engine容器、虚拟主机Host、上下文Context、Executor执行器、Connector连接器等,然后按顺序启动组件,成功后监听端口提供服务。

Android Activity Deeplink启动来源获取源码分析

       Deeplink在业务模块中作为外部应用的入口提供,不同跳转类型可能会导致应用提供不一致的服务,通常通过反射调用Activity中的mReferrer字段获取跳转来源的包名。然而,mReferrer存在被伪造的风险,可能导致业务逻辑出错或经济损失。因此,我们需要深入分析mReferrer的来源,并寻找更为安全的dnf全屏攻击源码获取方法。

       为了深入了解mReferrer的来源,我们首先使用搜索功能在Activity类中查找mReferrer,发现其在Attach方法中进行赋值。进一步通过断点调试跟踪调用栈,发现Attach方法是由ActivityThread.performLaunchActivity调用的。而performLaunchActivity在调用Attach时,传入的referrer参数实际上是一个ActivityClientRecord对象的referrer属性。深入分析后,发现referrer是在ActivityClientRecord的构造函数中被赋值的。通过进一步的调试发现,ActivityClientRecord的实例化来自于LaunchActivityItem的mReferrer属性。接着,我们分析了mReferrer的来源,发现它最终是由ActivityStarter的setCallingPackage方法注入的。而这个setCallingPackage方法的调用者是ActivityTaskManagerService的startActivity方法,进一步追踪调用链路,我们发现其源头是在App进程中的ActivityTaskManager.getService()方法调用。

       在分析了远程服务Binder调用的过程后,我们发现获取IActivityTaskManager.Stub的方法是ActivityTaskManager.getService()。这使得我们能够追踪到startActivity方法的调用,进而找到发起Deeplink的应用调用的具体位置。通过这个过程,我们确定了mReferrer实际上是通过Activity的getBasePackageName()方法获取的。

       为了防止包名被伪造,我们注意到ActivityRecord中还包含PID和Uid。通过使用Uid结合包管理器的方法来获取对应的包名,可以避免包名被伪造。通过验证Uid的来源,我们发现Uid实际上是通过Binder.getCallingUid方法获取的,且Binder进程是无法被应用层干涉的,因此Uid是相对安全的。接下来,我们可以通过Uid来置换包名,进一步提高安全性。

       总结,mReferrer容易被伪造,应谨慎使用。通过使用Uid来获取包名,可以提供一种更为安全的vue手机商城源码获取方式。此过程涉及对源代码的深入分析和调试,作者Chen Long为vivo互联网客户端团队成员。

Nginx源码分析 - 主流程篇 - Nginx的启动流程

       文章内容包含对Nginx源码的基础理解,以及对其主流程的深入分析。首先介绍了Nginx使用的各种基础数据结构,如pool、buf、array、list等,通过理解这些结构能更加深入地了解Nginx源码。

       接下来,文章着重分析了Nginx的启动流程,主要实现函数在./src/core/nginx.c文件中的main()函数。文章展示了main()函数启动过程,并详细解释了几个关键步骤。

       第一步,是通过ngx_get_options方法解析外部参数,比如命令行参数 ./nginx -s stop|start|restart。

       第二步,初始化全局变量,其中init_cycle在内存池上创建一个默认大小为的全局变量,这一过程在ngx_init_cycle函数中完成,详细的全局变量初始化步骤会在后续的文章中展开。

       第三步,通过ngx_save_argv和ngx_process_options保存头部的全局变量定义。

       接着,使用ngx_preinit_modules方法对所有模块进行初始化,并给它们打上标号,这一过程在ngx_module.c文件中进行。

       再一步,通过ngx_create_pidfile创建PID文件,文件管理在ngx_cycle.c文件中实现。

       此外,文章还提到了Nginx中涉及的其他重要模块,指出这些模块的详细解析会在后续的文章中呈现。

       总结,文章以实际代码为例,介绍了Nginx启动的全流程,并对关键步骤进行了解释,his系统c 源码为读者深入了解Nginx源码奠定了基础。

YARN源码剖析:NM启动过程

       NodeManager初始化和启动过程主要涉及配置文件读取,资源信息配置,以及服务启动等步骤。重点在于初始化阶段,配置文件读取完成,包括关于节点资源信息的配置。

       启动NodeManager(NM)时,遵循与ResourceManager(RM)类似的逻辑,启动各个服务。关键在于nodeStatusUpdater模块。其中两个重要方法为registerWithRM()和startStatusUpdater()。这两个方法通过RPC远程调用ResourceManager中的两个接口:registerNodeManager()和nodeHeartbeat()。

       NM启动过程中添加的服务列表构成其核心功能描述。例如,NodeHealthCheckerService提供节点健康检查功能,包含两个子service:NodeHealthScriptRunner(使用配置的脚本进行健康检查)和LocalDirsHandlerService(检查磁盘健康状况)。此服务包含getHealthReport()方法,用于获取健康检查结果。

       NM中的关键类之一为NMContext,它作为组件间信息共享的接口。

       NM与RM之间的心跳通信是整个过程中不可或缺的部分,确保了资源管理系统的实时状态监控与资源分配协调。

       综上所述,NodeManager的启动过程涉及初始化配置、启动关键服务以及与ResourceManager的交互,实现资源管理和节点健康监控等功能。这一过程为YARN框架提供了稳定、高效的基础结构。

头秃了,二十三张图带你从源码了解SpringBoot启动流程!

       源码版本

       作者使用的是Spring Boot的2.4.0版本。不同版本的Spring Boot可能存在差异,建议读者与作者保持一致,以确保源码的一致性。

       从哪入手

       Spring Boot源码的研究起点是主启动类,即标注着`@SpringBootApplication`注解并且包含`main()`方法的类。这是Spring Boot启动的核心。

       源码如何切分

       SpringApplication中的静态`run()`方法是一个复杂的流程,它分为两步:创建`SpringApplication`对象和执行`run()`方法。接下来将分别介绍这两部分。

       如何创建`SpringApplication`

       创建`SpringApplication`的过程本质上是一个对象的生成,通过调试追踪,最终调用的构造方法如图所示。创建过程主要涉及三个阶段,我们将逐一进行深入。

       设置应用类型

       创建过程中的重要步骤是确定应用类型,这将直接影响项目的性质,如Web应用或非Web应用。应用类型由WebApplicationType枚举类决定,加载特定类(如DispatcherServlet)来判断。

       设置初始化器

       初始化器(ApplicationContextInitializer)用于在IOC容器刷新之前进行初始化操作,例如ServletContextApplicationContextInitializer。获取初始化器的方式是从SpringApplication中的方法调用开始的,最终通过`#SpringFactoriesLoader.loadSpringFactories()`方法从类路径加载。

       设置监听器

       监听器(ApplicationListener)负责监听特定的事件(如IOC容器刷新或关闭)。在Spring Boot中,使用SpringApplicationEvent事件来扩展监听器概念,主要在启动过程中触发。获取监听器的方式与初始化器相同,从spring.factories文件中加载。

       总结

       SpringApplication的构建为`run()`方法的执行铺平了道路,关键步骤包括设置应用类型、初始化器和监听器。注意,初始化器和监听器需要在spring.factories文件中声明,才能在构建过程中加载,此时IOC容器尚未创建,即使注入到容器中也不会生效。

       执行`run()`方法

       在构建结束后,到了启动的阶段,`run()`方法将执行一系列操作,分为八个步骤进行详细解析。

       步骤1:获取并启动运行过程监听器

       SpringApplicationRunListener监听器用于监听应用程序的启动过程,通过调用方法从spring.factories文件中获取运行监听器实例,并执行特定事件的广播。

       步骤2:环境构建

       构建过程包括加载系统和自定义配置(如application.properties),并广播事件通知监听器。

       步骤3:创建IOC容器

       执行容器创建过程,根据应用类型选择容器类型,此步骤仅创建容器,未进行其他操作。

       步骤4:IOC容器的前置处理

       这一步是容器刷新前的准备工作,关键操作是将主启动类注入容器,为后续自动化配置奠定基础。

       步骤5:调用初始化器

       执行构建过程中设置的初始化器,加载自定义的初始化器实现。

       步骤6:加载启动类,注入容器

       将主启动类加载到IOC容器中,作为自动配置的入口。

       步骤7:两次事件广播

       这一步涉及两次事件广播,包括ApplicationContextInitializedEvent和ApplicationPreparedEvent。

       步骤8:刷新容器

       容器刷新由Spring框架完成,包括资源初始化、上下文广播器等。

       步骤9:IOC容器的后置处理

       这一步是容器刷新后的扩展操作,通常用于打印结束日志等。

       步骤:发出结束执行的事件

       使用EventPublishingRunListener广播ApplicationStartedEvent事件,允许在IOC容器中注入的监听器响应。

       步骤:执行Runners

       Spring Boot提供了两种Runner,即CommandLineRunner和ApplicationRunner,用于定制额外操作。

       总结

       Spring Boot启动流程相对简洁,通过八个步骤详细描述了从创建到执行的整个过程。理解run()方法的执行流程、事件、初始化器和监听器的执行时间点是关键。

SRS(simple-rtmp-server)流媒体服务器源码分析--启动

       小卒最近探索了SRS源码,并撰写博客以整理思路,方便日后查阅。SRS源码具备以下优势:

       1、轻量化设计,代码结构清晰,SRS3.0版本代码量约为8万行,功能却足以支撑直播业务。

       2、采用State Threads架构,实现高性能、高并发。

       3、支持rtmp和hls,满足PC和移动直播的需求。

       4、支持集群部署,适应不同规模的部署需求。

       代码分析分为两个阶段:一、梳理代码框架,理解流程;二、深入细节,熟悉SRS工作原理。

       SRS源码框架包括系统启动、RTMP消息处理、RTMP信息发布、HLS切片等功能模块。系统启动时,初始化类,监听端口,对每个访问请求创建线程,专门处理连接操作。

       系统监听包含不同类型的请求,如RTMP连接、HTTP API等,通过创建线程处理。

       RTMP连接处理中,SRS采用协程而非线程,实现高效并发。创建协程后,进入协程循环处理。

       HTTP API连接监听机制与RTMP类似,仅参数不同。

       HTTP API回调接口在run_master函数中注册,允许访问服务器参数。

       SRS对拉流处理独特,通过ffmpeg工具实现,SRS代码负责简单的系统调用。

       系统启动代码结构清晰,从初始化、监听到线程处理,再到回调注册、拉流处理、自服务,各环节紧密衔接。

       总结SRS源码分析,不仅展现了代码的高效性和扩展性,还提供了灵活的部署方案,适用于多种直播场景。

yarn源码分析(四)AppMaster启动

       在容器分配完成之后,启动容器的代码主要在ContainerImpl.java中进行。通过状态机转换,container从NEW状态向其他状态转移时,会调用RequestResourceTransition对象。RequestResourceTransition负责将所需的资源进行本地化,或者避免资源本地化。若需本地化,还需过渡到LOCALIZING状态。为简化理解,此处仅关注是否进行资源本地化的情况。

       为了将LAUNCH_CONTAINER事件加入事件处理队列,调用了sendLaunchEvent方法。该事件由ContainersLauncher负责处理。ContainersLauncher的handle方法中,使用一个ExecutorService(线程池)容器Launcher。ContainerLaunch实现了Callable接口,其call方法生成并执行launch_container脚本。以MapReduce框架为例,该脚本在hadoop.tmp.dir/application name/container name目录下生成,其主要作用是启动MRAppMaster进程,即MapReduce的ApplicationMaster。

Android 启动优化: JetPack App Startup 使用及源码浅析

       前言

       本文将深入探讨 JetPack App Startup 的使用及源码浅析,以解决 Android 应用启动优化问题。让我们一起探讨 JetPack App Startup 如何简化初始化流程,提升应用启动速度。

       目录

       1. 什么是 JetPack App Startup?

       2. JetPack App Startup 解决什么问题?

       3. JetPack App Startup 的基本使用

       4. JetPack App Startup 的进阶使用

       5. JetPack App Startup 源码浅析

       6. 小结

       什么是 JetPack App Startup?

       JetPack App Startup 是一个为应用启动提供简洁高效初始化方案的库,适用于库开发者和应用开发者。通过集成 App Startup,开发者可以简化启动序列,明确初始化顺序,减少初始化步骤。相较于单独定义 ContentProvider 供每个组件初始化,App Startup 允许开发者定义共享一个 ContentProvider 的组件初始化器,显著提升应用启动时间。

       JetPack App Startup 解决什么问题?

       理解 App Startup 的实际应用,有助于我们解决 Android 应用启动时间长的问题。Android 启动流程包括 Application#attachBaseContext、ContentProvider#onCreate、Application#onCreate 及 MainActivity#onCreate 等步骤。App Startup 旨在集中管理 ContentProvider 初始化,减少不必要的初始化操作,优化启动性能。

       基本使用

       使用 App Startup 分为三步:

       在 build.gradle 文件中添加依赖。

       自定义实现 Initializer 类。

       在 AndroidManifest 中配置自定义的 InitializationProvider。

       进阶使用

       App Startup 提供了灵活的初始化机制,允许开发者在特定时机执行初始化操作,而非仅在 Application onCreate 之前。这为开发者提供了更多自定义空间。

       源码浅析

       App Startup 的核心结构包括几个关键类:Initializer 接口和 InitializationProvider 类。Initializer 定义了初始化的基本操作,而 InitializationProvider 借助 ContentProvider 的特性,在应用启动之前执行初始化任务。

       小结

       本文分享了 JetPack App Startup 的使用方法及源码分析,提供了优化应用启动速度的实用技巧。我们还提供了一份包含 Android 学习资源的资料包,包括架构视频、面试文档及源码笔记,旨在帮助开发者深入理解高级架构知识。如果你对本文内容感兴趣,欢迎点赞、评论或转发支持。

相关栏目:知识