1.Async、拆分拆分Await 从源码层面解析其工作原理
2.C++必学将一个cpp源码文件拆分成多个文件
3.代码拆分-使用SplitChunks
4.List的源码源码拆分的几种方式
Async、Await 从源码层面解析其工作原理
深入理解 Async 和 Await 的系统工作原理,往往需要从源码层面进行剖析。拆分拆分使用 Babel 进行转换后,源码源码可以清晰地发现 Async 和 Await 实际上借助了 switch-case 和 promise,系统商品供应源码实现对流程的拆分拆分控制。以一个使用 Async 和 Await 的源码源码函数为例,我们仅关注核心部分代码。系统
经过 Babel 转换后的拆分拆分 name 函数,可以被拆分为三个主要部分:await 部分、源码源码return 部分以及 async 流程控制的系统结束部分(即 case "end")。这个拆分使得流程控制变得更为直观。拆分拆分在流程控制中,源码源码每一步执行后,系统都会等待合适的时机进入下一次执行。
这个“合适的时机”并非由 Async 内部决定,而是由执行的内容决定。例如,在发送异步请求后,只有在请求返回后才会进入下一个 case。
为了实现流程控制,需要借助 regenerator-runtime 这个 generator、Async 函数的源码短线运行时。它负责将 name 函数进行包装,并添加流程控制所需的信息。如 _context,以及用于流程控制的关键 helper,如 _asyncToGenerator 和 asyncGeneratorStep。通过这些辅助工具,再在 regenerator-runtime 的基础上进行一层包装,最终得到一个可以执行的函数。这个函数实际执行时,会调用封装后的函数。
在封装后的函数中,async1、async2 等实际上是在执行最终的封装函数内部的调用。这里的第三步是 Async 函数的核心机制。在 Promise.resolve(value).then(_next) 中,value 是每个分段最后的 case 返回的值。如果 value 是一个 Promise,那么在它 resolved 后,会将其.then添加到微任务队列。如果 value 不是一个 Promise,则直接添加,因为.then是一个微任务,当执行到它时,源码搭载会调用_next,从而开始执行下一个 case。
经过转换后的代码展示了封装后的函数内容,最终执行的是封装后的函数,因此说 async1、async2 执行实际上是执行封装后的函数。在封装后的函数内部,会调用 async1、async2。
C++必学将一个cpp源码文件拆分成多个文件
在进行代码拆分时,我们面临的问题是如何将一个较长的cpp文件中的函数分到多个文件中,同时确保代码的正确性和完整性。解决这个问题,通常可以遵循以下步骤:
首先,我们需要创建一个新的cpp源文件来定义那些除了main函数之外的其他函数。这样做可以使得代码更加模块化,易于维护和管理。在新创建的源文件中,我们将实现这些函数的逻辑,而在主cpp文件中仅保留main函数。
随后,为了实现函数的声明与定义分离,我们需要创建一个头文件。copilot源码在这个头文件中,我们只需声明那些需要在多个cpp文件中使用的函数,但不需要在这里定义它们的实现细节。这样做可以确保头文件仅包含函数的签名信息,而不会包含任何实际的代码。
在定义函数的cpp文件中,我们可以引用头文件来包含相应的函数声明。这里需要注意的是,仅在需要使用这些函数的地方引用头文件,避免在头文件中直接包含其他文件,以减少不必要的依赖关系和文件耦合性。
例如,我们创建一个名为"detector_utils.cpp"的cpp文件。在这个文件中,我们将实现一些与检测器相关的辅助函数,这些函数在main函数中会被调用。同时,我们需要在文件顶部包含"detector_utils.h"头文件,以获取函数声明。
"detector_utils.h"是一个头文件,其内容包含了所有在"detector_utils.cpp"中实现的函数声明。在这个文件中,我们声明了函数的mema源码签名信息,但并不包含任何函数的实现代码。这样,其他需要使用这些函数的cpp文件就可以通过包含"detector_utils.h"来获取函数的声明。
在实际操作中,我们还需要注意避免在头文件中直接包含其他文件。例如,如果"detector_utils.cpp"需要使用"utils/visualize.h"中的函数,那么在"detector_utils.h"中应避免直接包含"utils/visualize.h",而是通过在"detector_utils.cpp"中包含"utils/visualize.h"来引用需要的函数。这样可以确保头文件的简洁性,同时也避免了不必要的依赖和耦合关系。
通过以上步骤,我们可以有效地将cpp源码文件拆分成多个文件,同时保持代码的结构清晰、易于维护。这种方法对于大型项目或团队开发尤为重要,有助于提高代码的可读性和可扩展性。
代码拆分-使用SplitChunks
前言
探索代码优化的世界,最近开始接触项目优化工作,其中涉及三方组件的拆分。在未进行拆分前,可能存在两个场景:单一js文件过大,影响缓存效率;无法有效管理第三方库。利用`splitChunks`工具,可以将模块进行分割,并提取重复代码,解决上述问题。
概念区分 - module、bundle、chunk
深入理解`splitChunks`之前,先梳理几个概念。module:模块,在webpack中,任何文件都可视为模块,需要配置loader将其转换为支持打包的文件。chunk:编译完成待输出时,webpack将module按特定规则组合成一个个chunk。bundle:webpack处理完chunk文件后,生成供浏览器运行的代码。
chunk与bundle的关系
探析chunk的构成与bundle之间的关联。chunk有两种形式:初始化(initial)chunk,即入口起点的主chunk,包含入口起点及其依赖的所有模块;非初始化(non-initial)chunk,用于延迟加载,可能在使用动态导入或`SplitChunksPlugin`时出现。
通过入口产生的chunk
假设目录结构如下:index.js, another-module.js, webpack.config.js, package.json添加script配置,运行webpack并使用ndb追踪代码执行。通过命令启动浏览器,点击播放按钮执行build命令,追踪chunk到bundle的流转。
chunk处理步骤概览
从`Compilation`类的`seal`方法出发,首先搜集chunks,然后调用`createChunkAssets`方法生成source,为输出文件做准备;通过`compilation.emitAssets`方法记录资源信息到`compilation.assets`对象;一系列回调最终调用`onCompiled`方法,将assets信息写入输出目录,生成bundle文件。
Demo2 - 动态导入
将`index.js`中的lodash通过`import`方式导入,动态导入返回promise,通过`then`获取导入信息。修改`webpack.config.js`入口为单个`index.js`。源码追踪显示,初始化文件新增一个名为`index`的chunk,但在模块分析中识别到`import`方式,为`index.js`模块增加了`AsyncDependenciesBlock`标记,经过处理生成一个名为`null`的chunk。
总结:`chunk`是源代码中的抽象,封装定义如何将模块组写入文件,而`bundle`则是输出目录的文件。
解决隐患 - `splitChunks`配置
在上述示例中,存在三方模块重复引用的问题。通过简单的`optimization.splitChunks`配置,实现了lodash的抽离,降低了单个入口文件的大小。总结使用心得,`splitChunks`主要用于代码优化,针对不同场景配置`chunks`选项,如`all`、`async`、`initial`以及自定义函数,以达到高效拆分效果。
比较`async`、`initial`、`all`的区别
在示例中增加`another.js`,静态导入lodash,对比`async`、`all`、`initial`的不同效果。默认情况下,`initial`影响HTML文件中的脚本标签,而`async`仅针对动态导入,`all`则考虑更多场景,适合存在复用模块的情况,但需权衡动态导入及其内部依赖的抽离。
splitChunks.cacheGroups
在使用`splitChunks`基础上,通过`cacheGroups`实现更细粒度的代码拆分,进一步优化项目结构。
总结
通过`splitChunks`配置,实现三方组件的高效管理与拆分,优化代码结构与加载效率。理解模块、bundle、chunk之间的关系,以及如何利用`splitChunks`与`cacheGroups`进行代码拆分与优化,是提升项目性能的关键步骤。
List的拆分的几种方式
在开发过程中,处理大型集合时常常需要将其拆分成小块,这种操作被称作分片或List的分割。其实,许多大神已经为我们提供了现成的工具,省去了自定义代码的繁琐。以下是Java中常用的三种分片实现方法:
1. Google的Guava框架:在pom.xml中添加Guava支持后,通过Lists.partition()方法实现切片,代码示例如下:
...
2. Apache的commons框架:同样在pom.xml添加支持,使用ListUtils.partition(),代码示例如下:
...
3. Hutool工具类:引入Hutool框架后,利用ListUtil.partition()完成切片,代码示例如下:
...
值得注意的是,选择哪种方法取决于项目的实际需求和已有的依赖。例如,批量数据处理时,如果数据量大,可以考虑将数据拆分以避免一次性插入数据库导致的性能问题或超限错误。具体操作时,可以根据数据库的配置进行调整。
这些工具包如Guava、Apache Commons和Hutool,提供了丰富的实用工具,性能优良,是开发者的得力助手。无需深入源码,直接使用即可大大简化工作。
以上内容源于程序员xiaozhang的文章,原文链接:cnblogs.com/scott/p...