1.OpenCV和安装(包含所有平台)!
2.Opencv源码交叉编译Android库
3.如何从源码编译OpenCV4Android库
4.学习OpenCV4OpenCV源码中的源码examples的编译方法
5.OpenCV Carotene 源码阅读(持续更新)
6.OpenCV安装教程(全网最细,小白直接上手!源码!源码!源码)
OpenCV和安装(包含所有平台)!
在 OpenCV 的源码官方网站上,可以下载其最新完整版本以及多数 release 版本的源码ccx指标源码源码。如今,源码OpenCV 使用 Git 进行版本管理,源码同时也利用 Cmake 进行工程构建。源码
在 Windows 中,源码可通过下载 EXE 文件,源码该文件会将预编译好的源码 OpenCV 解压到本地,适配不同版本的源码 Visual Studio。然而,源码Windows 缺乏包含 debug 版本库的源码预编译版本,因此需要在项目启动前手动编译。需额外设置环境变量 OPENCV_DIR,通过 `setx` 命令将其路径设置为 `D:\OpenCV\Build\x\vc`。静态链接 OpenCV 仅需此步,若需动态链接库(DLL),需确保编译器能访问 `%OPENCV_DIR%\bin`。针对 Windows ,可于系统属性 -> 环境变量中添加 `%OPENCV_DIR%\bin` 到 path 变量。
使用源代码进行 OpenCV 编译,步骤包括运行 CMake GUI,设置 OpenCV 源码目录以及构建目标文件夹,配置编译器(或选择 MinGW 构建文件),使用 Visual Studio 打开生成的解决方案进行编译。Linux 环境下,expma副图源码需准备 GCC、GLIBC、GTK+ 2.x或更高版本、cmake、libtbb等库,下载源代码后通过 `./configure --enable-shared`、`make`、`sudo make install` 进行编译。
注意在 Ubuntu、Debian、SuSE等 Linux 发行版中,可能提供内置 OpenCV,否则需使用源代码安装,安装要求包括 Python 2.6 或更高版本、NumPy、ffmpeg 的 libav* 库与头文件等。Linux 与 Windows 类似,CMake 配置允许自定义构建选项,如构建指定例子、增加 Python 支持或启用 CUDA 功能。当编译完成时,文件将安装在指定目录,利用 IPP 进行加速,除非通过 CMake 指令明确禁用。
Mac 系统安装 OpenCV 类似于 Linux,Xcode 提供了构建和调试所需的大多数工具。Mac 默认采用 Cocoa 替代 GTK+、QTKit 替代 ffmpeg、php搜索劫持源码GDC 替代 TBB 和 OpenMP。从 GitHub 的 OpenCV Git 仓库下载最新版本,Linux 用户可执行 `git clone /opencv/opencv.git`。在编程路上,不断进阶与探索是值得的。
Opencv源码交叉编译Android库
本文主要介绍了如何在Android平台上进行OpenCV(版本2.4.)的源码交叉编译,并将其集成到Android应用中。首先,你需要确保已下载并配置好NDK(yourNDKPath),以及指定编译文件的存放路径(yourInstallPath)。在OpenCV根目录下,运行特定命令开始编译过程,这将生成所需的头文件、静态库和动态库。
接下来,你需要在你的项目中引入编译好的OpenCV库。这包括在CMakeLists.txt文件中配置工程,以便正确链接OpenCV库。完成配置后,进行工程的编译,确保所有的依赖项都已正确集成。
在Android设备上进行测试时,将编译的可执行文件与文件一起推送至设备,然后在终端执行程序。执行过程会输出相关结果。
总结来说,将标准编译工具链替换为NDK提供的交叉编译工具链是关键步骤。整个过程虽然需要一些设置,博客的html源码但一旦理清流程,实际操作并不复杂。有兴趣的开发者可以参考GitHub上的相关代码,通过star来表示支持。
如何从源码编译OpenCV4Android库
本文介绍如何从源码编译OpenCV4Android库,解决实际应用中遇到的问题。
通常,Android平台已有官方提供的OpenCV库,但实际应用中可能会遇到无法同时使用SNPE(高性能神经网络加速库)和OpenCV的问题,因为SNPE使用的STL链接的是libc++,而OpenCV默认使用的是gnu_stl,这会导致gradle配置无法正常编译。
为解决此问题,需要自行编译OpenCV4Android库,可选择在Linux下基于NDK编译,或在Windows中使用MinGW编译。本文选择前者,便于生成Docker镜像,方便部署。
对于已经配置好的编译镜像,可通过Docker命令启动,并设置环境变量。若需修改NDK或SDK版本,同样更新环境变量。然后进入目录开始编译,修改编译选项。
若从头开始搭建编译环境,首先生成基于Ubuntu.的阶次谱源码Docker基础容器,安装基础工具,如vim、ant或gradle。安装与配置Cmake,确保版本为3.6或以上,以支持HTTPS,避免编译过程中的文件下载失败。安装JDK和Android SDK,并配置环境变量。
下载OpenCV源码和contrib库,选择合适的分支以避免编译错误。编译过程可使用指定配置文件ndk-.config.py,选择需要编译的指令集、STL库等。
完成编译后,即可得到OpenCV-Android-SDK库,适用于Android Studio中的Java或C++接口使用,提供方便的计算机视觉功能。
学习OpenCV4OpenCV源码中的examples的编译方法
为了提供一种更直观的方式解答关于学习OpenCV4中`examples`编译方法的问题,以下内容将详细介绍此过程,并提供相应的步骤和资源。
首先,建议参考这篇总结详细的自动驾驶感知算法学习文章,它对OpenCV的学习提供了全面的指导。
此文章适用于零基础入门学习者,特别适合在校学生和想要转行的工程师,因为自动驾驶领域正处于快速发展阶段,掌握相关知识对未来的职业发展至关重要。
同时,我创建了一个GitHub仓库,分享了学习资源和项目代码,有兴趣的朋友可以访问并关注,以获取更多学习材料和交流机会。
在B站分享的视频内容也非常丰富,涵盖了自动驾驶和C++等主题,欢迎观看。
本文内容参考自《学习OpenCV4:基于Python的算法实战》一书,这本书包含了多个案例,全面覆盖了OpenCV的各个模块,是入门学习的理想选择。
在OpenCV源码中,包含有许多算法使用案例,这些案例涵盖了多种编程语言。我主要使用C++,因此计划将`examples`目录下的案例单独编译,通过调整原有脚本即可生成每个C++文件的可执行文件。
我将`cpp`文件夹提取出来,并新建了一个`build`文件夹,将编译结果存储于此。在`build`文件夹中执行特定命令即可完成项目的生成和编译。
在`cpp`文件夹的`CMakeLists.txt`文件中增加相应的调用,即可实现将文件转换为可执行文件的目标。
面对约个案例文件,手动编写调用过程可能会显得繁琐,因此我计划开发代码自动获取所有`cpp`文件,提取文件名,并生成对应的可执行文件。虽然此功能尚未完成,但编译流程的调整部分已经完成。
如果您对上述流程感兴趣,可以获取公众号或群里的相关编译文件。
总结所述内容,通过上述步骤和资源,您可以更高效地编译OpenCV4中的`examples`,并为自己的学习或项目开发提供更多实践机会。
OpenCV Carotene 源码阅读(持续更新)
OpenCV的Carotene库是NVIDIA为优化计算机视觉(CV)操作而精心设计的,特别针对ARM Neon架构,旨在加速诸如resize和Canny等关键算法。这款库以其清晰的代码和对SIMD编程初学者的友好性而备受赞誉。本文将深入探索Carotene的魅力,揭示其独特的功能点,如accumulate函数的多变接口,包括square accumulate和addweight,后者展示了创新的处理策略。
Carotene的Blur(k3x3_u8)处理方法与众不同,采用了seperateFilter算法,而非传统的O(1)复杂度,展示了其在效率优化上的独到之处。值得一提的是,行方向移位求和和normalize系数的量化计算,都被Carotene以精细的技巧逐一解析。要了解更多细节,不妨直接查看其源码,那里充满了值得学习的见解和实践经验。
Carotene在指令处理上展现出了高效能,如一次性执行乘系数、类型转换和右移等操作,通过vqrdmulhq_s等矢量化指令,实现了寄存器数据的复用。对于边界处理,left_border通过set_lane技术轻松搞定,而right_border的成本则更低。库中还包括了integral和sqrtIntegral的实现,行方向积分的向量化通过移位操作得以高效完成,即使在arm Neon缺乏element shift指令的情况下,Carotene也能通过uint_t标量移位巧妙解决。
在模糊处理上,GaussianBlur遵循Blur的优化思路,对gauss_kernel进行了量化。另外,还有诸如absdiff、add_weighted、add、bitwise以及channel_extract/combine等N-1种基础算子,它们巧妙地结合了neon指令和宏定义,为性能提升做出了贡献。这些细节的精心设计,充分体现了Carotene在提升OpenCV性能上的匠心独运。
总的来说,Carotene的源码是学习SIMD编程和OpenCV优化的绝佳资源,无论是对于开发者还是对性能追求者来说,都是一份值得深入探索的宝藏。如果你对这些技术感兴趣,不要犹豫,立即投身于源码的世界,你会发现其中隐藏的无数精彩。
OpenCV安装教程(全网最细,小白直接上手!!!)
OpenCV是用于计算机视觉的库,适用于Python、Ruby和MATLAB。在VSLAM技术研究中,经常需要在Ubuntu系统上安装不同版本的OpenCV。以下为OpenCV3.3.1版本在Ubuntu系统下的安装教程,适合初学者。
一、下载OpenCV源码
欲安装OpenCV3.3.1版本,可关注公众号「3D视觉工坊」,在后台回复「OpenCV3.3.1_linux」获取安装包下载链接。
二、检查已安装的OpenCV版本
在终端输入命令`pkg-config --modversion opencv`查看当前安装的OpenCV版本。
三、安装OpenCV
下载并解压OpenCV3.3.1的源码安装包后,执行如下命令进行安装,安装路径为`/home/yongqi/workspace/2_ProgramFiles/OpenCV3.3.1`。
四、配置OpenCV环境
配置OpenCV的lib路径,以完成环境设置。
五、测试OpenCV版本
完成配置后,系统显示的OpenCV版本应为3.3.1。
六、学习OpenCV
提供一份包含G资料的《人工智能自学视频》资料包,内容包括人工智能基础入门、AI框架实战、图像识别、OpenCV、机器学习等,以及国内外知名资源、AI论文等。
资料在网盘中整理整齐,欢迎下载!分享给有需要的伙伴。如果需要使用OpenCV2.4.9版本,只需调整第四步的pkgconfig路径即可。
2024-12-22 11:57
2024-12-22 11:37
2024-12-22 11:18
2024-12-22 10:32
2024-12-22 10:22
2024-12-22 10:05