1.源码解析kafka删除topic
2.深入剖析Zookeeper原理(五)ZK核心源码剖析
3.Zookeeper源码集群启动
4.ZookeeperApach Curator 框架源码分析:初始化过程(一)Ver 4.3.0
5.zookeeper开山篇-编译安装与zk基础命令使用
源码解析kafka删除topic
本文以kafka0.8.2.2为例,码分解析如何删除一个topic以及其背后的码分关键技术和源码实现过程。
删除一个topic涉及两个关键点:配置删除参数以及执行删除操作。码分
首先,码分配置参数`delete.topic.enable`为`True`,码分这是码分网站文档主题源码Broker级别的配置,用于指示kafka是码分否允许执行topic删除操作。
其次,码分执行命令`bin/kafka-topics.sh --zookeeper zk_host:port/chroot --delete --topic my_topic_name`,码分此命令指示kafka删除指定的码分topic。
若未配置`delete.topic.enable`为`True`,码分topic仅被标记为删除状态,码分而非立即清除。码分此时,码分通常的码分做法是手动删除Zookeeper中的topic信息和日志,但这仅会清除Zookeeper的数据,并不会真正清除kafkaBroker内存中的topic数据。因此,最佳做法是配置`delete.topic.enable`为`True`,然后重启kafka。
接下来,我们介绍几个关键类和它们在删除topic过程中的作用。
1. **PartitionStateMachine**:该类代表分区的状态机,决定分区的当前状态及其转移。状态包括:NonExistentPartition、NewPartition、OnlinePartition、OfflinePartition。
2. **ReplicaManager**:负责管理当前机器的所有副本,处理读写、删除等具体操作。读写操作流程包括获取partition对象,论股指标源码再获取Replica对象,接着获取Log对象,并通过其管理的Segment对象将数据写入、读出。
3. **ReplicaStateMachine**:副本的状态机,决定副本的当前状态和状态之间的转移。状态包括:NewReplica、OnlineReplica、OfflineReplica、ReplicaDeletionStarted、ReplicaDeletionSuccessful、ReplicaDeletionIneligible、NonExistentReplica。
4. **TopicDeletionManager**:管理topic删除的状态机,包括发布删除命令、监听并开始删除topic、以及执行删除操作。
在删除topic的过程中,分为四个阶段:客户端执行删除命令、未配置`delete.topic.enable`的流水、配置了`delete.topic.enable`的流水、以及手动删除Zookeeper上topic信息和磁盘数据。
客户端执行删除命令时,会在"/admin/delete_topics"目录下创建topicName节点。
未配置`delete.topic.enable`时,topic删除流程涉及监听topic删除命令、判断`delete.topic.enable`状态、标记topic为不可删除、以及队列删除topic任务。
配置了`delete.topic.enable`时,额外步骤包括停止删除topic、手机板指标源码检查特定条件、更新删除topic集合、激活删除线程、执行删除操作,如解除分区变动监听、清除内存数据结构、删除副本数据、删除Zookeeper节点信息等。
关于手动删除Zookeeper上topic信息和磁盘数据,通常做法是删除Zookeeper的topic相关信息及磁盘数据,但这可能导致部分内存数据未清除。是否会有隐患,需要进一步测试。
总结而言,kafka的topic删除流程基于Zookeeper实现,通过配置参数、执行命令、管理状态机以及清理相关数据,以实现topic的有序删除。正确配置`delete.topic.enable`并执行删除操作是确保topic完全清除的关键步骤。
深入剖析Zookeeper原理(五)ZK核心源码剖析
ZooKeeper内部维护了三种选举算法:LeaderElection, FastLeaderElection和AuthLeaderElection。FastLeaderElection与AuthLeaderElection的实现类似,关键差别在于AuthLeaderElection加入了认证信息,但已被ZooKeeper淘汰。FastLeaderElection相较于LeaderElection更加高效,已在3.4.0版本后不被推荐使用。当前版本仅保留FastLeaderElection选举算法。
接下来,将深入探讨FastLeaderElection选举算法的具体实现。此算法在ZooKeeper中通过高效的机制确定领导者角色,以保证集群的前端影视源码分享稳定性和高效性。
深入分析FastLeaderElection算法源码,理解其实现机制,有助于我们更好地掌握ZooKeeper的核心原理。代码逻辑清晰,通过分布式共识算法,确保了选举过程的公平性和正确性。
为了实现高效的选举过程,FastLeaderElection引入了一系列优化。这些优化包括但不限于,通过优化算法减少选举过程中的通信开销,以及通过改进数据结构提高选举过程的执行效率。
在实现过程中,FastLeaderElection核心接口被精心设计,确保了选举算法的可扩展性和灵活性。这些接口不仅支持基本的选举功能,还提供了丰富的异常处理机制,以应对各种异常情况。
此外,ZooKeeper的持久化机制是其稳定性的重要保障。ZooKeeper通过事务日志实现持久化处理,确保了数据的一致性和可靠性。日志记录了所有对集群状态的修改操作,使得数据恢复和故障恢复成为可能。
在ZooKeeper中,Watcher机制的实现是其核心功能之一。Watcher用于通知客户端关于节点状态的变更,以实现实时数据同步。ZooKeeper内部的Watcher管理器(ZKWatchManager)和watch注册类(如ExistWatchRegistration、DataWatchRegistration、ChildWatchRegistration等)共同实现了这一机制。
这些注册类分别对应了不同的斐波周期源码watch类型,允许客户端根据需求订阅不同的事件。例如,ExistWatchRegistration用于监听节点是否存在,DataWatchRegistration用于监听节点数据的变化,而ChildWatchRegistration用于监听子节点的变更。
通过这些watch注册类,客户端能够实时接收来自ZooKeeper集群的事件通知,从而实现实时的数据同步和状态感知。同时,ZooKeeper通过Watcher机制实现了对节点状态的高效监控,确保了数据的一致性和集群的稳定性。
最后,ZooKeeper的网络通信实现是其对外提供服务的基础。通过优化的网络通信协议,ZooKeeper能够高效地在分布式环境中进行数据交换和状态同步。这一部分的实现涉及到多种通信机制,如TCP协议、数据编码、消息格式等,确保了数据传输的可靠性和性能。
总结,ZooKeeper通过精心设计的选举算法、持久化机制、Watcher机制和网络通信实现,提供了一套高效、稳定和可靠的服务框架。深入理解这些核心原理和实现细节,有助于我们更好地运用ZooKeeper在分布式系统中解决实际问题。
Zookeeper源码集群启动
Zookeeper集群启动分为两步,首先确定集群模式,然后启动集群。
在启动时,需调用org.apache.zookeeper.server.quorum.QuorumPeerMain#main方法,这是启动入口。
main方法初始化QuorumPeerMain对象,并加载配置文件。配置文件决定Zookeeper是单机模式还是集群模式。
在加载配置文件后,程序判断集群模式。在单机模式下,Zookeeper将直接启动并进入运行状态。在集群模式下,Zookeeper会进一步执行runFromConfig方法。
runFromConfig方法负责创建集群实例,确定角色分配(Leader、Follower、Observer)。每个实例独立运行,通过心跳机制保持状态同步。
Leader负责发起维护集群状态,处理写操作,将写操作广播至所有服务器。Follower直接处理读请求,将写请求转发给Leader。Observer与Follower类似,但无投票权。
在集群中,同一时间只有一个Leader,其它服务器扮演Follower或Observer角色。集群中的角色状态动态调整,确保高可用性。
通过以上步骤,Zookeeper成功启动集群,实现分布式系统中的主从复制与高可用性。
ZookeeperApach Curator 框架源码分析:初始化过程(一)Ver 4.3.0
Curator是由Netflix开源的一款用于简化Zookeeper客户端开发的工具,它提供了一套高级别API,使得开发者可以更简单易懂地实现分布式应用程序。Curator构建在Zookeeper原生客户端之上,提供了连接重试、异常处理、节点监听等常见功能,减轻了开发者的工作负担。Curator由多个模块组成,其中curator-framework和curator-recipes是最常用的部分,此外还提供了分布式锁等功能。
Curator的最新版本为5.X系列,不再支持ZK 3.4.X及之前的版本。主要的改动在5.X系列中,原因包括代码重构、API调整等,导致不兼容之前的版本。
Curator的下载地址可以通过Maven依赖管理或Apache官方网站获取。要开始使用Curator,需要搭建Zookeeper集群环境,详细部署过程可参考其他文章。
引入Curator依赖后,开发者可以使用CuratorFrameworkFactory构建实例,通过此实例连接Zookeeper集群并执行分布式操作,如分布式锁等。Curator内部实现了重试策略、连接管理等,使得操作更为便捷且稳定。
Curator提供了可重入锁(公平锁)的示例,开发者可以通过简单的代码实现分布式锁功能。初始化CuratorFramework实例的过程包括设置连接参数、构建实例、启动连接等步骤,内部会处理网络重连、异常处理等逻辑。
在Curator的初始化过程中,CuratorFrameworkImpl是核心类,它负责构建与Zookeeper集群的连接,并封装了一系列关键组件,如连接管理、异常检测、负载均衡等。CuratorZookeeperClient类负责Zookeeper客户端的封装和调用。
CuratorFrameworkImpl的启动过程涉及初始化连接状态管理器、启动客户端连接、执行后台操作等关键步骤。通过CAS操作确保线程安全,并在异常情况下自动重试连接。
连接状态管理器(ConnectionStateManager)负责维护连接状态并处理状态变更通知,确保在状态改变时能够及时通知到监听器。通知机制包括注册一次性监听器、注册CuratorListener和ConnectionStateListener,以及处理未处理的错误。
Curator的会话管理机制包括连接状态检查和重连策略,确保在连接断开后能够自动恢复连接。在状态变更时,连接状态管理器会通知所有注册的监听器,执行相应的回调逻辑。
Curator还提供了缓存机制,用于保存节点数据并在数据发生变化时进行更新。此外,Curator支持多次注册监听器,确保在连接断开后能够重新注册监听器,以避免丢失监听事件。
通过上述分析,Curator为开发者提供了高效、稳定的Zookeeper客户端实现,简化了分布式应用程序的开发过程。在实际应用中,开发者需要根据项目需求选择合适的版本和功能模块,以充分利用Curator提供的便利性。
zookeeper开山篇-编译安装与zk基础命令使用
随着软件规模的扩张,分布式服务逐渐成为解决并发流量问题的主流选择,Apache的Zookeeper作为一款成熟的分布式协调组件,为分布式应用提供一致性服务。本文将带你步入Zookeeper的学习之旅,从基础安装和命令使用开始。
Zookeeper是Apache的一个分布式应用程序协调服务,它扮演着配置管理、域名服务、分布式同步和组服务等角色,是Hadoop和Hbase的重要组成部分。它的主要作用是保证分布式系统中的数据一致性。
下载安装步骤有两个:首先,可从官网(mirrors.tuna.tsinghua.edu.cn...)下载最新版本的zookeeper-xxx.tar.gz,解压后将conf目录下的zoo_sample.cfg复制并重命名为zoo.cfg,配置dataDir和dataLogDir,然后双击bin目录下的zkServer.cmd启动服务。
另一种方法是下载zk源码,通过Ant进行编译。首先,根据开发环境和zk源码版本下载Ant,配置环境变量,然后在GitHub上选择相应的版本进行git下载。编译时需注意zk源码中的properties-maven-plugin和exec-maven-plugin插件配置,可能需要手动修改以适应本地环境。
启动单机版zk服务时,可能会遇到编译错误,需检查pom.xml文件和git.properties配置。成功编译后,通过zkCli.cmd客户端连接,通过ls、create、get、stat、delete等命令操作zk节点,实现基本的创建、读取、修改和删除功能。
本文仅是Zookeeper学习的入门,后续还将深入探讨更多命令和配置细节,欢迎持续关注。作者:享学课堂online,来源:今日头条。