1.抽丝剥茧:Electron与Node.js的源码奇葩Bug
2.nodejs 14.0.0源码分析之setTimeout
抽丝剥茧:Electron与Node.js的奇葩Bug
起因是最近在用Electron开发一个桌面端项目,有个需求是源码需要遍历某个文件夹下的所有JavaScript文件,对它进行AST词法语法分析,源码解析出元数据并写入到某个文件里。源码需求整体不复杂,源码只是源码跑分源码运营版细节有些麻烦,当我以为开发的源码差不多时,注意到一个匪夷所思的源码问题,查的源码我快怀疑人生。
缘起
什么问题呢?
原来这个需求一开始仅是源码遍历当前文件夹下的文件,我的源码获取所有JS文件的代码是这样的:
后来需求改为要包含文件夹的子文件夹,那就需要进行递归遍历。源码按照我以前的源码做法,当然是源码手撸一个递归,代码并不复杂,源码缺点是递归可能会导致堆栈溢出:
但做为一个紧跟时代浪潮的开发者,我知道Node.js的fs.readdir API中加了一个参数recursive,表示可以进行递归,人家代码的鲁棒性肯定比我的好多了:
只改了一行代码,美滋滋~
兼容性怎么样呢?我们到Node.js的API文档里看下:
是从v..0添加的,而我本地使用的Node.js版本正是这个(好巧),我们Electron中的Node.js版本是多少呢?先看到electron的版本是.0.4:
在Electron的 发布页上能找到这个版本对应的是..1,比我本地的还要多一个小版本号:
这里需要说明一下,Electron之所以优于WebView方案,是因为它内置了Chrome浏览器和Node.js,锁定了前端与后端的版本号,这样只要Chrome和Node.js本身的跨平台没有问题,理论上Electron在各个平台上都能获得统一的UI与功能体验。 而以Tauri为代表的WebView方案,则是不内置浏览器,应用程序使用宿主机的spring 源码扩展浏览器内核,开发包的体积大大减小,比如我做过的同样功能的一个项目,Electron版本有M+,而Tauri的只有4M左右。虽然体积可以这么小,又有Rust这个性能大杀器,但在实际工作中的技术选型上,想想各种浏览器与不同版本的兼容性,换我也不敢头铁地用啊! 所以,尽管Electron有这样那样的缺点,仍是我们开发客户端的不二之选。 之所以提这个,是因为读者朋友需要明白实际项目运行的是Electron内部的Node.js,而我们本机的Node.js只负责启动Electron这个工程。
以上只是为了说明,我这里使用fs.readdir这个API新特性是没有问题的。
排查
为方便排查,我将代码再度简化,提取一个单独的文件中,被Electron的Node.js端引用:
能看到控制台打印的 Node.js 版本与我们刚才查到的是一样的,文件数量为2:
同样的代码使用本机的Node.js执行:
难道是这个小版本的锅?按理说不应该。但为了排除干扰,我将本机的Node.js也升级为..1:
这下就有些懵逼了!
追踪
目前来看,锅应该是Electron的。那么第一思路是什么?是不是人家已经解决了啊?我要不要先升个级?
没毛病。
升级Electron
将Electron的版本号换成最新版本v.1.0:
再看效果:
我去,正常了!
不过,空心柱源码这个包的升级不能太草率,尤其正值发版前夕,所以还是先改代码吧,除了我上面手撸的代码外,还有个包readdirp也可以做同样的事情:
这两种方式,在原版本的Electron下都没有问题。
GitHub上搜索
下来接着排查。
Electron是不是有人发现了这个Bug,才进行的修复呢?
去 GitHub issue里瞅一瞅:
没有,已经关闭的问题都是年提的问题,而我们使用的Electron的版本是年月日发布的。 那么就去 代码提交记录里查下(GitHub这个功能还是很好用的):
符合条件的就一条,打开看下:
修复的这个瞅着跟我们的递归没有什么关系嘛。
等等,这个文件是什么鬼?
心血来潮的收获
我们找到这个文件,目录在lib下:
从命名上看,这个文件是对Node.js的fs模块的一个包装。如果你对Electron有了解的话,仔细一思索,就能理解为什么会有这么个文件了。我们开发时,项目里会有许多的资源,Electron的Node.js端读取内置的文件,与正常Node.js无异,但事实上,当我们的项目打包为APP后,文件的路径与开发状态下完全不一样了。所以Electron针对打包后的文件处理,重写了fs的各个方法。
这段代码中重写readdir的cocopod源码分析部分如下:
上面的判断isAsar就是判断是否打包后的归档文件,来判断是否要经Electron特殊处理。如果要处理的话,会调用Electron内部的C++代码方法进行处理。
我发现,这里Electron并没有对打包后的归档文件处理递归参数recursive,岂不是又一个Bug?应该提个issue提醒下。
不过,我们目前的问题,并不是它造成的,因为现在是开发状态下,上面代码可以简化为:
对Promise了如指掌的我怎么看这代码也不会有问题,只是心血来潮执行了一下:
我去,差点儿脑溢血!
好的一点是,曙光似乎就在眼前了!事实证明,心血来潮是有用的!
Node.js的源码
这时不能慌,本地切换Node.js版本为v,同样的代码再执行下:
这说明Electron是被冤枉的,锅还是Node.js的!
Node.js你这个浓眉大眼的,居然也有Bug!呃,还偷偷修复了!
上面的情况,其实是说原生的fs.readdir有问题:
也就是说,fs.promises.readdir并不是用util.promisify(fs.readdir)实现的!
换成同步的代码readdirSync,效果也是麻将前端源码一样:
我们来到Node.js的GitHub地址,进行 搜索:
打开这两个文件,能发现,二者确实是不同的实现,不是简单地使用util.promisify进行转换。
fs.js
我们先看 lib/fs.js。
当recursive为true时,调用了一个readdirSyncRecursive函数,从这个命名上似乎可以看出有性能上的隐患。正常来说,这个函数是异步的,不应该调用同步的方法,如果文件数量过多,会把主进程占用,影响性能。
如果没有recursive,则是原来的代码,我们看到binding readdir这个函数,凡是binding的代码,应该就是调用了C++的底层库,进行了一次『过桥』交互。
我们接着看readdirSyncRecursive,它的命名果然没有毛病,binding readdir没有第4个参数,是完全同步的,这个风险是显而易见的:
fs/promises.js
在lib/internal/fs/promises.js中,我们看到binding readdir的第4个参数是kUsePromises,表明是个异步的处理。
当传递了recursive参数时,将调用readdirRecursive,而readdirRecursive的代码与readdirSyncRecursive的大同小异,有兴趣的可以读一读:
fs.js的提交记录
我们搜索readdir的提交记录,能发现这两篇都与深度遍历有关:
其中 下面的这个,正是我们这次问题的罪魁祸首。
刚才看到的fs.js中的readdirSyncRecursive里这段长长的注释,正是这次提交里添加的:
从代码对比上,我们就能看出为什么我们的代码遍历的程序为2了,因为readdirResult是个二维数组,它的长度就是2啊。取它的第一个元素的长度才是正解。坑爹!
也就是说,如果不使用withFileTypes这个参数,得到的结果是没有问题的:
发版记录
我们在Node.js的发版记录中,找到这条提交记录,也就是说,v..0才修复这个问题。
而Electron只有Node.js更新到v后,这个功能才修复。
而从Electron与Node.js的版本对应上来看,得更新到v了。
只是需要注意的是,像前文提过的,如果是遍历的是当前项目的内置文件,Electron并没有支持这个新的参数,在打包后会出现Bug。
fs的同步阻塞
其实有人提过一个 issue:
确实是个风险点。所以,建议Node.js开发者老老实实使用fs/promises代替fs,而Electron用户由于坑爹的fs包裹,还是不要用这个特性了。
总结
本次问题的起因是我的一个Electron项目,使用了一个Node.js fs API的一个新参数recursive递归遍历文件夹,偶然间发现返回的文件数量不对,就开始排查问题。
首先,我选择了升级Electron的包版本,发现从v.0.4升级到最新版本v.1.0后,问题解决了。但由于发版在即,不能冒然升级这么大件的东西,所以先使用readdirp这个第三方包处理。
接着排查问题出现的原因。我到Electron的GitHub上搜索issue,只找到一条近期的提交,但看提交信息,不像是我们的目标。我注意到这条提交的修改文件(asar-fs-wrapper.ts),是Electron针对Node.js的fs API的包装,意识到这是Electron为了解决打包前后内置文件路径的问题,心血来潮之下,将其中核心代码简化后,测试发现问题出在fs.promises readdir的重写上,继而锁定了Node.js版本v..1的fs.readdir有Bug。
下一步,继续看Node.js的源码,确定了fs.promises与fs是两套不同的实现,不是简单地使用util.promisify进行转换。并在fs的代码找到关于recursive递归的核心代码readdirSyncRecursive。又在提交记录里,找到这段代码的修复记录。仔细阅读代码对比后,找到了返回数量为2的真正原因。
我们在Node.js的发版记录中,找到了这条记录的信息,确定了v..0才修复这个问题。而内嵌Node.js的Electron,只有v版本起才修复。
不过需要注意的是,如果是遍历的是当前项目的内置文件,由于Electron并没有支持这个新的参数,在打包后会出现Bug。而且由于fs.readdir使用recursive时是同步的,Electron重写的fs.promises readdir最终调用的是它,可能会有隐性的性能风险。
本次定位问题走了些弯路,一开始将目标锁定到Electron上,主要是它重写fs的锅,如果我在代码中用的fs.readdirSync,那么可能会更早在Node.js上查起。谁能想到我调用的fs.promises readdir不是真正的fs.promises readdir呢?
最后,针对此次问题,我们有以下启示:
PS:我给Electron提了个 issue,一是让他们给fs.readdir添加recursive参数的实现,二是让他们注意下重写时fs.promises readdir的性能风险。
nodejs .0.0源码分析之setTimeout
本文深入剖析了Node.js .0.0版中定时器模块的实现机制。在.0.0版本中,Node.js 对定时器模块进行了重构,改进了其内部结构以提高性能和效率。下面将详细介绍定时器模块的关键组成部分及其实现细节。 首先,让我们了解一下定时器模块的组织结构。Node.js 采用了链表和优先队列(二叉堆)的组合来管理定时器。链表用于存储具有相同超时时间的定时器,而优先队列则用来高效地管理这些链表。 链表通过 TimersList数据结构进行管理,它允许将具有相同超时时间的定时器归类到同一队列中。这样,Node.js 能够快速定位并处理即将到期的定时器。 为了进一步优化性能,Node.js 使用了一个优先队列(二叉堆)来管理所有链表。在这个队列中,每个链表对应一个节点,根节点表示最快到期的定时器。在时间循环(timer阶段)时,Node.js 会从二叉堆中查找超时的节点,并执行相应的回调函数。 为了实现这一功能,Node.js 还维护了一个超时时间到链表的映射,以确保快速访问和管理定时器。 接下来,我们将从 setTimeout函数的实现开始分析。这个函数主要涉及 new Timeout和 insert两个操作。其中,new Timeout用于创建一个对象来存储定时器的上下文信息,而 insert函数则用于将定时器插入到优先队列中。 具体地,Node.js 使用了 scheduleTimer函数来封装底层计时操作。这个函数通过将定时器插入到libuv的二叉堆中,为每个定时器指定一个超时时间(即最快的到期时间)。在执行时间循环时,libuv会根据这个时间判断是否需要触发定时器。 当定时器触发时,Node.js 会调用 RunTimers函数来执行回调。回调函数是在Node.js初始化时设置的,负责处理定时器触发时的具体逻辑。在回调函数中,Node.js 遍历优先队列以检查是否有其他未到期的定时器,并相应地更新libuv定时器的时间。 最后,Node.js 在初始化时通过设置 processTimers函数作为超时回调来确保定时器的正确执行。通过这种方式,Node.js 保证了定时器模块的初始化和定时器触发时的执行逻辑。 本文通过详尽的分析,展示了Node.js .0.0版中定时器模块的内部机制,包括其组织结构、数据管理和回调处理等关键方面。虽然本文未涵盖所有细节,但对于理解Node.js定时器模块的实现原理提供了深入的洞察。对于进一步探索Node.js定时器模块的实现,特别是与libuv库的交互,后续文章将提供更详细的分析。