1.颜色的无极无极前世今生15·RGB拾色器详解
颜色的前世今生15·RGB拾色器详解
小编:干货来咯!续前面高冷内容,通道今天@endlessring给大家分享第篇之RGB拾色器,源码源码是无极无极不是觉得很熟悉呢?但是往下看小伙伴门可能会发现,之前大家对之了解可能并不是通道那么多,跟着大神玩转颜色吧!源码源码python数据源码文章有点长,无极无极希望对大家有帮助!通道RGB系统是源码源码难点最多的,扫清了障碍之后,无极无极就可以轻轻松松讲解设色器啦~\(≧▽≦)/~
但在此之前,通道因为有网友说RGB加法色原理没有讲清楚,源码源码所以再在这里补充一下。无极无极
RGB加法色原理
为什么RGB加法色可以生成各种颜色呢?我们可以从人眼如何感应颜色的通道理论(颜色视觉理论)来理解。
现在关于颜色视觉原理,源码源码有一套比较成熟的理论来解释,这个理论包括三个方面:
1.三色学说;
2.对比色学说;
3.阶段学说;
虽然这套理论能解释现在大部分的现象,但也不能说它是成熟的理论。并且他们大部分是科学家的理论假设,在实验验证上还有很多不足。毕竟我们不能把人的脑袋劈开来做实验对吧?这么滴也太不人道了。。。所以在实验验证方面,只能设计实验来间接证明理论的正确与否。这一点大家要理解。
不过,这些细节对我们只考虑“怎么用”的人来说无关紧要,交给科学家头疼去吧。
来看看对RGB系统最重要的理论假设:三色学说,也被称为“杨-赫姆霍尔兹理论”(以创立它们的科学家命名)。剩下的两个等讲Lab系统的时候再详细介绍。
人眼的视网膜细胞分为两种(已有解剖学成果支持):
1.负责暗视觉的杆状细胞,没有颜色感应功能,攒攒 脚本 源码只能感应明度;晚上用;
2.负责明视觉的锥状细胞,有颜色感应功能;白天用,光线一暗,就不行了,得让杆状细胞上;
视网膜中的锥状细胞和杆状细胞
其中锥状细胞按照对光谱响应的峰值不同分为三种:
1.感红锥状细胞;
2.感绿锥状细胞;
3.感蓝锥状细胞;
(这方面解剖学的实验成果还有很多不足。最大的问题在于,感红感绿感蓝细胞在解剖学上区分不出来,就是说它们外观长得都一样。。。现在的科研成果倾向于认为,是细胞中的微观能态结构的不同,导致吸收光线的峰值不同。好吧。。。不要在意这些细节。。。)
锥状细胞又分为感红、感绿、感蓝三种
三种细胞不同的光谱响应曲线
这就相当于人眼有三种传感器,分别采集红绿蓝三种颜色的信号强度。获得的RGB信号的比例不同,就会得到不同的颜色感觉(实际上,这就是数码相机的像素工作原理)。
人眼的颜色感觉,一定程度上,就是取决于这RGB三个传感器的信号的绝对强度(明度)和相对强度(信号之间的比值,决定色调、饱和度)。进一步,如果人眼的81源码网骗局RGB感受到达一定比例的平衡,就会产生消色(黑白灰)的感觉。
也可以这么理解,牛顿从白光分离出了赤橙黄绿青蓝紫,但其实人眼仅仅是靠红绿蓝来识别颜色的。所以人造光源可以仅靠红绿蓝三种光来骗过眼睛,“虚拟”出白色,乃至更多的颜色。
根据这个原理,如果我有RGB三个颜色的灯,就可以通过改变灯的光强配比,让人眼感觉到不同的颜色。而如果我们有两种不同的光谱分布A和B,不管实际它们的差异有多大如何,只要人眼这个RGB传感器得到的三个信号的强度值一样,那么人眼就会认为A和B这两个颜色是一样的。根据这个原理,我们就可以实现颜色的复现。
用RGB三盏灯,匹配出不同的颜色
该如何操作?
当用RGB灯光匹配出亮度最大的白光时,记下它们的强度值,并固定下来,设置为RGB灯光的最大值,暂时记为%。
灯光的强度从0到%的变化,如果可以无极调控,就可以生成无数种颜色。但是,我们现在用的都是数字显示系统,计算机处理都用二进制。所以,灯光的强度从0到%的变化,只能分成有限的档位,并且这个档位的小程序源码演示数量应该是2的N次方。
目前显示系统的主流标准,位色:
1.每一个像素都包含位数据,正好是3个字节的长度;在计算机里大概长这样:
2.RGB三个通道,每个通道包含1个字节的数据量,即每种颜色的数据深度是8位;
3.这意味着RGB三盏灯,每一盏灯的光强,都可以有个档位调整(2的8次方);从完全关掉的0(黑色)到最亮的(白色,对应无级调控的%)可调;
这就是所有RGB显示系统(CRT、液晶、OLED、LED点阵)的显示原理。你可以理解为,整个显示平面上有很多盏小灯在开开关关。每三个RGB小灯组成一个像素,每个像素负责显示自己的颜色。而许许多多的像素合在一起,就形成了显示画面。
进一步,我们可以用RGB三盏灯的档位大小的数据,来给所有我们能得到的颜色来进行编号。
比如,当我们知道某一个颜色A由(R:;G:;B:)组成,我们就可以把这个数字记下来,根据这个就可以随时随地复现这个颜色。——这就实现了颜色信息的存储。当我们把这个数据传给别人,别人即使在异地,也可以用别的RGB系统来复现。——这就实现了颜色信息的传递。
再进一步,把0到的数据,用十六进制写出来,就是钉钉系统源码RGB显色系统对颜色的十六进制编码。比如上文的颜色A,编号应为#C9(前面标注#号,以示区别)。也可以理解为,这个颜色的RGB分量分别是(十六进制的)、和C9。
这个编号简单易懂,并且正好是3个字节,方便计算机的存储、计算和传输。对于需要显示的颜色数量而言,也够用了。(如果RGB通道不是8位位深,而是7位位深,那么就只有个颜色可用,相比人眼能分辨的千万种颜色就太少了,会看到色带现象。)
可以说,RGB是一个非常成功的颜色编码系统,一切都如此完美,鼓掌~~
RGB拾色器详解
这样,PS中的拾色器界面是不是就很好理解了?
当选中R前面的点选框,意味你现在开始采用RGB系统来选色,并且R是主要调整对象:用滑动条来调整R分量的大小,从0到,由小变大。色域部分,则显示当前颜色随着G和B分量的增加而产生的变化。
当颜色位于色域左下角时,G和B的分量为0,所以还是正红色。在色域右上角,G和B都增加到了,满格,就生成了白色。
点选G和B前面的选框时,道理同上。
那么问题来了,当我想要某一个颜色的时候,该怎么调整RGB分量呢?
靠。。。嗯不,靠规律:
通过上几期对色度图的介绍,大家已经了解了,如果混合G和B,新生成的颜色X,一定在G和B的连线上。这时,增加R,新生成的颜色Y一定在X和R的连线上。
所以,把色度图上颜色的位置记下来,就可以根据自己的需要来调整颜色了。
——太复杂了有木有?!
来个简化版的:
由于色光加法色的色相环其实就是色度图的简化模型,所以我们可以在下面这个6色的色相环里来看这个问题:
也就是说,黄青品红,是三原色形成的间色。而间色+对应的原色=消色。所以我们可以得到3个补色对:
至于为什么呢?观察一下色度图上他们之间的相互位置,这就是对色度图的一个简化。另外,CMY这三个字母的排序,正好是RGB的补色对应。心机啊心机。
假设现在有一个颜色X,我希望它能饱和度下降明度上升(变白),就应该增加B分量。如果希望明度下降(变灰),就应该减少B的补色,也就是形成**的R和G。
而如果颜色Y本身是靠近消色区域,增加B分量就不会使得饱和度下降,反而是向蓝色方向上升。所以,应该怎么调整RGB分量,取决于当前颜色的位置和你的目标。
其实还是很麻烦。。。囧。。。
所以我个人是很少用RGB选色的。。。有没有高人有好点的用法,快来指点一二~~
我觉得RGB系统最好用的应该是这个:十六进制编码输入框。
——把选中的颜色搬到别的软件里、从其他资料里面看到好看的颜色要搬到PS里来,直接粘贴拷贝或者敲几个数就好了,好方便\(^o^)/~
另外,搞明白RGB和CMY的补色关系,对调色也很有帮助。所以,别的先不管,这个6色色相环最好背下来!
修色楼主打算以后再讲,这篇已经写得太长了。。。大家可以看看李涛老师的这篇教程:如何把照片里的雾霾天修成艳阳天~
如何通过控制原色让你的照片变的通透
最后,我们选色的时候,有时候会看到有警告框弹出来。上面一排的警告框,是针对打印色域的检查。如果当前颜色超出了CMYK系统的色域范围,就会跳出叹号来提示你。并且,在下面的小方块里,会显示一个最接近当前颜色、又在CMYK色域内的颜色。单击这个小方块,就可以切换成这个打印安全色。
如果你是做Web设计,这个警告就可以不予理会。
但是如果你是要出海报,要给报纸上出广告什么的,就要注意这个问题,超出打印色域的颜色尽量不要用。并不是说用了打印安全色就没有色差了额。。。而是超出范围的颜色,那个色差…基本属于随机不可控类型,神仙都没办法(摊手
打印安全色的警告下面,还可能出现一个超出Web安全色的警告。
这个Web安全色是啥意思?
很久很久以前,网页设计师都是一群程序员,他们可以直接在源代码里面给背景和字体指定颜色。
由于当年的显示器和计算机平台的限制,主流配置可以实现的颜色停留在色上。为了获得更多的颜色,有些系统会采用一种叫做抖动(Dithering)的、非常奇葩的办法来获得更多的颜色。但是各家的抖动办法又不一样,所以没发保证同一个页面在不同的系统里看起来一样。
为了兼容平台(微软和苹果)和浏览器(网景、IE等等)的不同,再考虑到硬件和软件的诸多限制,业界统一了Web浏览器使用的颜色库,定义了大概多种颜色的标准代码。也就是说,如果在网页源代码里面,使用这多种颜色的十六进制代码,就可以保证它在各个显示器中不会出现抖动,因此在这个意义上是“安全”的(避免了抖动带来的色差)。
现在嘛,毕竟技术已经今非昔比,现在的显示器不是位色怎么好意思出门跟人打招呼?所以我个人觉得这个东西意义已经不大。
不过,有时候画个示意图什么的,因为并不需要非常精细的颜色,所以我个人还比较爱用这个。把色域下面的“只有Web颜色”的选框选中,就只显示Web安全色了。颜色少有颜色少的好处:面积大,好选。。。(你是有多懒。。。
下面是历史八卦时间。
如果有同学认为位色难以理解,那是因为你没看过之前的好么。。。在形成业界公认的位色之前,RGB显色系统经过了很长一段时间的标准混乱。各个公司用不同的平台、不同的硬软件系统,因此给RGB系统的编码方式是很不一样的。
总的来说,就是一个像素的数据深度,从1位(单色)开始不停升级,到2位、3位、4位。。。然后到8位(色),再到位(高彩),再到位(真彩)的发展历程。
到了位色,上文已经分析过了,各方面都堪称完美,又是微软和苹果主推的标准,所以横扫天下,一统江湖。
今天我们以IBM、微软制定的标准为线索,来重温一下历史~
站酷
原文作者:endlessring
2024-12-23 01:561247人浏览
2024-12-23 01:26981人浏览
2024-12-23 01:172362人浏览
2024-12-23 01:09878人浏览
2024-12-23 00:001496人浏览
2024-12-22 23:261970人浏览
近日,北京市石景山区市场监管局对辖区含有挥发性有机化合物的建筑类涂料与胶黏剂产品销售主体开展专项整治,进一步强化挥发性有机化合物含量限制管理,切实守住产品质量安全底线。执法人员重点检查五金店、日杂店、
1.地方门户系统创建方法2.地方门户网站一般用什么程序开发?地方门户系统创建方法 在创建地方门户系统时,有三种主要方法:独立开发、下载现成源码更改以及购买商业门户系统。 独立开发是自行设计并实