欢迎来到皮皮网官网

【易语言源码易语言源码下载】【微溯源码】【爱源码视频】rdd容错源码_rdp_check_fds错误

时间:2024-12-23 08:08:52 来源:星座测算源码

1.rdd的特点
2.RDD运行原理
3.Apache Spark RDD介绍
4.RDD的错源错误cache和persist原理

rdd容错源码_rdp_check_fds错误

rdd的特点

       rdd的特点如下:

       1、RDD是Spark提供的核心抽象,全称为ResillientDistributedDataset,即弹性分布式数据集。

       2、RDD在抽象上来说是一种元素集合,包含了数据。它是被分区的,分为多个分区,每个分区分布在集群中的不同节点上,从而让RDD中的数据可以被并行操作。

       3、RDD通常通过Hadoop上的文件,即HDFS文件或者Hive表,来进行创建;有时也可以通过应用程序中的集合来创建。

       4、RDD最重要的特性就是,提供了容错性,可以自动从节点失败中恢复过来。即如果某个节点上的RDDpartition,因为节点故障,导致数据丢了,那么RDD会自动通过自己的数据来源重新计算该partition。这一切对使用者是透明的。

       5、RDD的数据默认情况下存放在内存中的,但是在内存资源不足时,Spark会自动将RDD数据写入磁盘。

RDD运行原理

        • 许多迭代式算法(比如机器学习、图算法等)和交互式数据挖掘工 具,错源错误共同之处是错源错误,不同计算阶段之间会重用中间结果

        • 目前的错源错误MapReduce框架都是把中间结果写入到HDFS中,带来了大量的错源错误数据复制、磁盘IO和序列化开销

        • RDD就是错源错误易语言源码易语言源码下载为了满足这种需求而出现的,它提供了一个抽象的错源错误数据架 构,我们不必担心底层数据的错源错误分布式特性,只需将具体的错源错误应用逻辑表达为一系列转换处理,不同RDD之间的错源错误转换操作形成依赖关系,可以实现管道化,错源错误避免中间数据存储

        • 一个RDD就是错源错误一个分布式对象集合,本质上是错源错误一个只读的分区记录集合,每个RDD可分成多个分区,错源错误微溯源码每个分区就是错源错误一个数据集片段,并且一 个RDD的不同分区可以被保存到集群中不同的节点上,从而可以在集群中的不同节点上进行并行计算

        • RDD提供了一种高度受限的共享内存模型,即RDD是只读的记录分区的集合,不能直接修改,只能基于稳定的物理存储中的数据集创建RDD, 或者通过在其他RDD上执行确定的转换操作(如map、join和group by) 而创建得到新的RDD

        (1)高效的容错性

        • 现有容错机制:数据复制或者记录日志

        • RDD:血缘关系、重新计算丢失分区、无需回滚系统、重 算过程在不同节点之间并行、只记录粗粒度的操作

        (2)中间结果持久化到内存,数据在内存中的爱源码视频多个RDD操作之间 进行传递,避免了不必要的读写磁盘开销

        (3)存放的数据可以是Java对象,避免了不必要的对象序列化和 反序列化

        • 窄依赖表现为一个 父RDD的分区对应 于一个子RDD的分 区或多个父RDD的 分区对应于一个子 RDD的分区

        • 宽依赖则表现为存 在一个父RDD的一 个分区对应一个子 RDD的多个分区

        Spark通过分析各个RDD的依赖关系生成了DAG,再通过分析各个RDD 中的分区之间的依赖关系来决定如何划分Stage,具体划分方法是:

        •在DAG中进行反向解析,遇到宽依赖就断开

        •遇到窄依赖就把当前的RDD加入到Stage中

        •将窄依赖尽量划分在同一个Stage中,可以实现流水线计算

        (1)创建RDD对象;

        (2)SparkContext负责计算RDD之间的依赖关系,构建DAG;

        (3)DAGScheduler负责把DAG图分解成多个Stage,每个Stage中包含了多个 Task,每个Task会被TaskScheduler分发给各个WorkerNode上的Executor去执行。

        优点:惰性调用、管道化、避免同步等待、不需要保存中间结果、方转转源码每次操作变得简单

Apache Spark RDD介绍

       RDD(Resilient Distributed Datasets)是Apache Spark中用于分布式计算的核心抽象。它的设计旨在提供高效、容错的内存计算能力,适用于大规模集群环境。

       RDD提供了一种只读、分片记录集合,只能通过静态存储数据或其它RDD创建,支持迭代算法和交互式数据挖掘的高效执行。与MapReduce框架相比,RDD更加注重数据的复用和减少磁盘I/O、数据同步的开销,使得内存读取速度更快。

       在RDD框架中,养殖系统源码数据操作分为Transformation(数据转换)和Action(动作执行)。Transformation是延迟执行的,只有在遇到Action操作时才会真正运行。例如,创建RDD的操作包括从文件系统加载数据,或通过map、filter等方法进行转换。

       RDD有窄依赖与宽依赖之分。窄依赖在单个节点内执行,节省了数据传输的开销,而宽依赖则涉及到多个节点间的数据shuffle。窄依赖在节点故障恢复时效率更高,只需重新计算丢失的RDD数据,而宽依赖则需要从祖先节点开始重新计算。

       Apache Spark的任务调度采用BSP(Bulk Synchronous Parallel)模型,实现整体同步并行计算。BSP模型具有快速恢复故障和优化数据处理吞吐量的优点,但可能增加数据处理的延迟。

       RDD和Spark的结合使得Apache Spark成为处理大规模数据的高效工具,支持迭代算法、交互式数据挖掘,并提供快速恢复机制和优化的资源调度。

RDD的cache和persist原理

       在Spark数据处理中,为了提升性能,通常会利用RDD的缓存功能,通过persist()或cache()方法将计算结果存储在内存或磁盘中。这不仅避免了重复计算,还支持算法迭代和快速交互式使用。RDD的缓存机制具有容错性,数据丢失后会自动重新计算。

       Spark提供了多种存储级别,如MEMORY_ONLY(仅内存)、MEMORY_AND_DISK(内存和磁盘)、MEMORY_ONLY_SER(序列化内存)等,用户可以根据需求选择合适的级别,以平衡内存使用和CPU效率。默认情况下,RDD缓存级别为NONE,调用persist()后才会生效。Shuffle操作时,Spark会自动缓存一些数据以提高容错性。

       选择存储级别时,需考虑计算成本和数据访问速度。例如,如果数据量大且计算代价高,选择DISK_ONLY可能更合适;对于快速访问,MEMORY_ONLY或MEMORY_ONLY_SER更为理想。此外,replication选项允许设置数据副本,提供容错,但会增加存储和计算资源消耗。

       persist()函数的实现并不直接进行数据缓存,而是设置RDD的storageLevel,当读取或计算分区时,根据存储级别决定是否进行缓存。这个过程在计算RDD时触发,数据会存储在内存或磁盘,具体步骤包括判断存储级别、从内存或磁盘获取数据,或计算并保存数据。

       通过unpersist()函数,用户可以手动清除缓存,Spark会自动管理LRU缓存。在SparkContext中,一旦设置的storageLevel不可修改,确保数据操作的一致性。

       通过实践操作,如测试不同存储级别的缓存,可以更好地理解RDD缓存和persist的工作原理。总的来说,Spark的缓存功能是提高性能的关键手段,合理选择和管理存储级别至关重要。

copyright © 2016 powered by 皮皮网   sitemap