欢迎来到【gotv源码贴吧】【网页布局源码】【杨幂源码】音视频解析源码_视频解析播放器源码-皮皮网网站!!!

皮皮网

【gotv源码贴吧】【网页布局源码】【杨幂源码】音视频解析源码_视频解析播放器源码-皮皮网 扫描左侧二维码访问本站手机端

【gotv源码贴吧】【网页布局源码】【杨幂源码】音视频解析源码_视频解析播放器源码

2024-12-22 22:26:58 来源:{typename type="name"/} 分类:{typename type="name"/}

1.ffplay视频播放原理分析
2.零基础读懂视频播放器控制原理: ffplay 播放器源代码分析
3.flv.js源码知识点(下) FLV格式解析
4.WebRTC PeerConnection源码分析1-main window/附:WebRTC源码级深度解析,音视源码进阶大厂高级音视频开发者课程
5.音视频开发 (WebRTC、频解频解OpenGL、析源析播FFmpeg、码视ijkplayer、放器jsmpeg.....)源码解析!音视源码gotv源码贴吧成为一名合格的频解频解音视频开发者!
6.Python爬虫腾讯视频m3u8格式分析爬取(附源码,析源析播高清无水印)

音视频解析源码_视频解析播放器源码

ffplay视频播放原理分析

       作者|赵家祝

       FFmpeg框架由命令行工具和函数库组成,码视ffplay是放器其中的一种命令行工具,提供了播放音视频文件的音视源码功能,不仅可以播放本地多媒体文件,频解频解还可以播放网络流媒体文件。析源析播本文从ffplay的码视整体播放流程出发,借鉴其设计思路,放器学习如何设计一款简易的播放器。

一、播放器工作流程

       在学习ffplay源码之前,为了方便理解,我们先宏观了解一下播放器在播放媒体文件时的工作流程。

       解协议:媒体文件在网络上传输时,需要经过流媒体协议将媒体数据分段成若干个数据包,这样就可以满足用户一边下载一边观看的需求,而不需要等整个媒体文件都下载完成才能观看。常见的流媒体协议有RTMP、HTTP、HLS、MPEG-DASH、MSS、HDS等。由于流媒体协议中不仅仅包含媒体数据,还包含控制播放的信令数据。因此,解协议是移除协议中的信令数据,输出音视频封装格式数据。

       解封装:封装格式也叫容器,就是将已经编码压缩好的视频流和音频流按照一定的格式放到一个文件中,常见的封装格式有MP4、FLV、MPEG2-TS、AVI、MKV、MOV等。解封装是将封装格式数据中的音频流压缩编码数据和视频流压缩编码数据分离,方便在解码阶段使用不同的解码器解码。

       解码:压缩编码数据是在原始数据基础上采用不同的编码压缩得到的数据,而解码阶段就是编码的逆向操作。常见的视频压缩编码标准有H./H.、MPEG-2、AV1、V8/9等,音频压缩编码标准有AAC、MP3等。解压后得到的视频图像数据是YUV或RGB,音频采样数据是PCM。

       音视频同步:解码后的视频数据和音频数据是独立的,在送给显卡和声卡播放前,需要将视频和音频同步,避免播放进度不一致。

二、main函数

       ffplay的使用非常简单,以ffplay-iinput.mp4-loop2为例,表示使用ffplay播放器循环播放input.mp4文件两遍。执行该命令时,对应的源码在fftools/ffplay.c中,程序入口函数是main函数。

       注:本文ffplay源码基于ffmpeg4.4。

       2.1环境初始化

       初始化部分主要调用以下函数:

       init_dynload:调用SetDllDirectory("")删除动态链接库(DLL)搜索路径中的当前工作目录,是Windows平台下的一种安全预防措施。

       av_log_set_flag:设置log打印的网页布局源码标记为AV_LOG_SKIP_REPEATED,即跳过重复消息。

       parse_loglevel:解析log的级别,会匹配命令中的-loglevel字段。如果命令中添加-report,会将播放日志输出成文件。

       avdevice_register_all:注册特殊设备的封装库。

       avformat_network_init:初始化网络资源,可以从网络中拉流。

       parse_options:解析命令行参数,示例中的-iinput.mp4和-loop2就是通过这个函数解析的,支持的选项定义在options静态数组中。解析得到的文件名、文件格式分别保存在全局变量input_filename和file_iformat中。

       2.2SDL初始化

       SDL的全称是SimpleDirectMediaLayer,是一个跨平台的多媒体开发库,支持Linux、Windows、MacOS等多个平台,实际上是对DirectX、OpenGL、Xlib再封装,在不同操作系统上提供了相同的函数。ffplay的播放显示是通过SDL实现的。

       main函数中主要调用了以下三个SDL函数:

       SDL_Init:初始化SDL库,传入的参数flags,默认支持视频、音频和定时器,如果命令中配置了-an则禁用音频,配置了-vn则禁用视频。

       SDL_CreateWindow:创建播放视频的窗口,该函数可以指定窗口的位置、大小,默认是*大小。

       SDL_CreateRenderer:为指定的窗口创建渲染器上下文,对应的结构体是SDL_Render。我们既可以使用渲染器创建纹理,也可以渲染视图。

       2.3解析媒体流

       stream_open函数是ffplay开始播放流程的起点,该函数传入两个参数,分别是文件名input_filename和文件格式file_iformat。下面是函数内部的处理流程:

       (1)初始化VideoState:VideoState是ffplay中最大的结构体,所有的视频信息都定义在其中。初始化VideoState时,先定义VideoState结构体指针类型的局部变量is,分配堆内存。然后初始化结构体中的变量,例如视频流、音频流、字幕流的索引,并赋值函数入参filename和iformat。

       (2)初始化FrameQueue:FrameQueue是解码后的Frame队列,Frame是解码后的数据,例如视频解码后是YUV或RGB数据,音频解码后是PCM数据。初始化FrameQueue时,会对VideoState中的pictq(视频帧队列)、subpq(字幕帧队列)、sampq(音频帧队列)依次调用frame_queue_init函数进行初始化。FrameQueue内部是通过数组实现了一个先进先出的环形缓冲区,windex是写指针,被解码线程使用;rindex是读指针,被播放线程使用。使用环形缓冲区的好处是,缓冲区内的元素被移除后,其它元素不需要移动位置,适用于事先知道缓冲区最大容量的场景。

       (3)初始化PacketQueue:PacketQueue是解码前的Packet队列,用于保存解封装后的数据。初始化PacketQueue时,杨幂源码会对VideoState中的videoq(视频包队列)、audio(音频包队列)、subtitleq(字幕包队列)依次调用packet_queue_init函数进行初始化。不同于FrameQueue,PacketQueue采用链表的方式实现队列。由于解码前的包大小不可控,无法明确缓冲区的最大容量,如果使用环形缓冲区,容易触发缓冲区扩容,需要移动缓冲区内的数据。因此,使用链表实现队列更加合适。

       (4)初始化Clock:Clock是时钟,在音视频同步阶段,有三种同步方法:视频同步到音频,音频同步到视频,以及音频和视频同步到外部时钟。初始化Clock时,会对VideoState中的vidclk(视频时钟)、audclk(音频时钟)、extclk(外部时钟)依次调用init_clock函数进行初始化。

       (5)限制音量范围:先限制音量范围在0~之间,然后再根据SDL的音量范围作进一步限制。

       (6)设置音视频同步方式:ffplay默认采用AV_SYNC_AUDIO_MASTER,即视频同步到音频。

       (7)创建读线程:调用SDL_CreateThread创建读线程,同时设置了线程创建成功的回调read_thread函数以及接收参数is(stream_open函数最开始创建的VideoState指针类型的局部变量)。如果线程创建失败,则调用stream_close做销毁逻辑。

       (8)返回值:将局部变量is作为函数返回值返回,用于处理下面的各种SDL事件。

       2.4SDL事件处理

       event_loop函数内部是一个for循环,使用SDL监听用户的键盘按键事件、鼠标点击事件、窗口事件、退出事件等。

三、read_thread函数

       read_thread函数的作用是从磁盘或者网络中获取流,包括音频流、视频流和字幕流,然后根据可用性创建对应流的解码线程。因此read_thread所在的线程实际上起到了解协议/解封装的作用。核心处理流程可以分为以下步骤:

       3.1创建AVFormatContext

       AVFormatContext是封装上下文,描述了媒体文件或媒体流的构成和基本信息。avformat_alloc_context函数用于分配内存创建AVFormatContext对象ic。

       拿到AVFormatContext对象后,在调用avformat_open_input函数打开文件前,需要设置中断回调函数,用于检查是否应该中断IO操作。

?ic->interrupt_callback.callback=decode_interrupt_cb;ic->interrupt_callback.opaque=is;

       decode_interrupt_cb内部返回了一个VideoState的abort_request变量,该变量在调用stream_close函数关闭流时会被置为1。

       3.2打开输入文件

       在准备好前面的一些赋值操作后,就可以开始根据filename打开文件了。avformat_open_input函数用于打开一个文件,并对文件进行解析。如果文件是一个网络链接,则发起网络请求,在网络数据返回后解析音频流、视频流相关的数据。

       3.3搜索流信息

       搜索流信息使用avformat_find_stream_info函数,该从媒体文件中读取若干个包,然后从其中搜索流相关的信息,最后将搜索到的流信息放到ic->streams指针数组中,数组的大小为ic->nb_streams。

       由于在实际播放过程中,用户可以指定是否禁用音频流、视频流、字幕流。因此在解码要处理的展示系统源码流之前,会判断对应的流是否处于不可用状态,如果是可用状态则调用av_find_best_stream函数查找对应流的索引,并保存在st_index数组中。

       3.4设置窗口大小

       如果找到了视频流的索引,则需要渲染视频画面。由于窗体的大小一般使用默认值*,这个值和视频帧真正的大小可能是不相等的。为了正确显示承载视频画面的窗体,需要计算视频帧的宽高比。调用av_guess_sample_aspect_ration函数猜测帧样本的宽高比,调用set_default_window_size函数重新设置显示窗口的大小和宽高比。

       3.5创建解码线程

       根据st_index判断音频流、视频流、字幕流的索引是否找到,如果找到了就依次调用stream_component_open创建对应流的解码线程。

       3.6解封装处理

       接下来是一个for(;;)循环:

       (1)响应中断停止、暂停/继续、Seek操作;

       (2)判断PacketQueue队列是否满了,如果满了就休眠ms,继续循环;

       (3)调用av_read_frame从码流中读取若干个音频帧或一个视频帧;

       (4)从输入文件中读取一个AVPacket,判断当前AVPacket是否在播放时间范围内,如果是则调用packet_queue_put函数,根据类型将其放在音频/视频/字幕的PacketQueue中。

四、stream_component_open函数

       3.5小节讲到,stream_component_open函数负责创建不同流的解码线程。那么它是如何创建解码线程的呢?

       4.1创建AVCodecContext

       AVCodecContext是编解码器上下文,保存音视频编解码相关的信息。使用avcodec_alloc_context3函数分配空间,使用avcodec_free_context函数释放空间。

       4.2查找解码器

       根据解码器的id,调用avcodec_find_decoder函数,查找对应的解码器。与之类似的一个函数是avcodec_find_encoder,用于查找FFmpeg的编码器。两个函数返回的结构体都是AVCodec。

       如果指定了解码器名称,则需要调用avcodec_find_decoder_by_name函数查找解码器。

       不管是哪种方式查找解码器,如果没有找到解码器,都会抛异常退出流程。

       4.3解码器初始化

       找到解码器后,需要打开解码器,并对解码器初始化,对应的函数是avcodec_open2,该函数也支持编码器的初始化。

       4.4创建解码线程

       判断解码类型,创建不同的解码线程。

switch(avctx->codec_type){ caseAVMEDIA_TYPE_AUDIO://音频...if((ret=decoder_init(&is->auddec,avctx,&is->audioq,is->continue_read_thread))<0)gotofail;...if((ret=decoder_start(&is->auddec,audio_thread,"audio_decoder",is))<0)gotoout;...caseAVMEDIA_TYPE_VIDEO://视频...if((ret=decoder_init(&is->viddec,avctx,&is->videoq,is->continue_read_thread))<0)gotofail;if((ret=decoder_start(&is->viddec,video_thread,"video_decoder",is))<0)gotoout;...caseAVMEDIA_TYPE_SUBTITLE://字幕...if((ret=decoder_init(&is->subdec,avctx,&is->subtitleq,is->continue_read_thread))<0)gotofail;if((ret=decoder_start(&is->subdec,subtitle_thread,"subtitle_decoder",is))<0)gotoout;...}

       线程创建在decoder_start函数中,依然使用SDL创建线程的方式,调用SDL_CreateThread函数。

五、video_thread函数

       视频解码线程从视频的PacketQueue中不断读取AVPacket,解码完成后将AVFrame放入视频FrameQueue。音频的解码实现和视频类似,这里仅介绍视频的解码过程。

       5.1创建AVFrame

       AVFrame描述解码后的原始音频数据或视频数据,通过av_frame_alloc函数分配内存,通过av_frame_free函数释放内存。

       5.2视频解码

       开启for(;;)循环,不断调用get_video_frame函数解码一个视频帧。该函数主要调用了decoder_decode_frame函数解码,decoder_decode_frame函数对音频、视频、字幕都进行了处理,主要依靠FFmpeg的avcodec_receive_frame函数获取解码器解码输出的数据。

       拿到解码后的视频帧后,会根据音视频同步的方式和命令行的-framedrop选项,判断是勒索病毒源码否需要丢弃失去同步的视频帧。

       命令行带-framedrop选项,无论哪种音视频同步机制,都会丢弃失去同步的视频帧。

       命令行带-noframedrop选项,无论哪种音视频同步机制,都不会丢弃失去同步的视频帧。

       命令行不带-framedrop或-noframedrop选项,若音视频同步机制为同步到视频,则不丢弃失去同步的视频帧,否则会丢弃失去同步的视频帧。

       5.3放入FrameQueue

       调用queue_picture函数,将AVFrame放入FrameQueue。该函数内部调用了frame_queue_push函数,采用了环形缓冲区的处理方式,对写指针windex累加。

staticvoidframe_queue_push(FrameQueue*f){ if(++f->windex==f->max_size)f->windex=0;SDL_LockMutex(f->mutex);f->size++;SDL_CondSignal(f->cond);SDL_UnlockMutex(f->mutex);}六、音视频同步

       ffplay默认采用将视频同步到音频的方式,分以下三种情况:

       如果视频和音频进度一致,不需要同步;

       如果视频落后音频,则丢弃当前帧直接播放下一帧,人眼感觉跳帧了;

       如果视频超前音频,则重复显示上一帧,等待音频,人眼感觉视频画面停止了,但是有声音在播放;

       ffplay视频同步到音频的逻辑在视频播放函数video_refresh中实现。该函数的调用链是:main()->event_loop()->refresh_loop_wait_event()->video_refresh。

       6.1判断播放完成

       调用frame_queue_nb_remaing函数计算剩余没有显示的帧数是否等于0,如果是,则不需要走剩下的步骤。计算过程比较简单,用FrameQueue的size-rindex_shown,size是FrameQueue的大小,rindex_shown表示rindex指向的节点是否已经显示,如果已经显示则为1,否则为0。

       6.2播放序列匹配

****

       分别调用frame_queue_peek_last和frame_queue_peek函数从FrameQueue中获取上一帧和当前帧,上一帧是上次已经显示的帧,当前帧是当前待显示的帧。

       (1)比较当前帧和当前PacketQueue的播放序列serial是否相等:

       如果不等,重试视频播放的逻辑;

       如果相等,则进入(2)流程判断;

       注:serial是用来区分是不是连续的数据,如果发生了seek,会开始一个新的播放序列,

       (2)比较上一帧和当前帧的播放序列serial是否相等:

       如果不相等,则将frame_timer更新为当前时间;

       如果相等,不处理并进入下一流程

       6.3判断是否重复上一帧

       (1)将上一帧lastvp和当前帧vp传入vp_duration函数,通过vp->pts-lastvp->pts计算上一帧的播放时长。

       注:pts全称是PresentationTimeStamp,显示时间戳,表示解码后得到的帧的显示时间。

       (2)在compute_target_delay函数中,调用get_clock函数获取视频时钟,调用get_master_clock函数获取同步时钟,计算两个时钟的差值,根据差值计算需要delay的时间。

       (3)如果当前帧播放时刻(is->frame_timer+delay)大于当前时刻(time),表示当前帧的播放时间还没有到,相当于当前视频超前音频了,则需要将上一帧再播放一遍。

last_duration=vp_duration(is,lastvp,vp);delay=compute_target_delay(last_duration,is);time=av_gettime_relative()/.0;if(time<is->frame_timer+delay){ *remaining_time=FFMIN(is->frame_timer+delay-time,*remaining_time);gotodisplay;}

       6.4判断是否丢弃未播放的帧

       如果当前队列中的帧数大于1,则需要考虑丢帧,只有一帧的时候不考虑丢帧。

       (1)调用frame_queue_peek_next函数获取下一帧(下一个待显示的帧),根据当前帧和下一帧计算当前帧的播放时长,计算过程和6.3相同。

       (2)满足以下条件时,开始丢帧:

       当前播放模式不是步进模式;

       丢帧策略生效:framedrop>0,或者当前音视频同步策略不是音频到视频。

       当前帧vp还没有来得及播放,但是下一帧的播放时刻(is->frame_timer+duration)已经小于当前系统时刻(time)了。

       (3)丢帧时,将is->frame_drops_late++,并调用frame_queue_next函数将上一帧删除,更新FrameQueue的读指针rindex和size。

if(frame_queue_nb_remaining(&is->pictq)>1){ Frame*nextvp=frame_queue_peek_next(&is->pictq);duration=vp_duration(is,vp,nextvp);if(!is->step&&(framedrop>0||(framedrop&&get_master_sync_type(is)!=AV_SYNC_VIDEO_MASTER))&&time>is->frame_timer+duration){ is->frame_drops_late++;frame_queue_next(&is->pictq);gotoretry;}}七、渲染

       ffplay最终的图像渲染是由SDL完成的,在video_display中调用了SDL_RenderPresent(render)函数,其中render参数是最开始在main函数中创建的。在渲染之前,需要将解码得到的视频帧数据转换为SDL支持的图像格式。转换过程在upload_texture函数中实现,细节不在此处分析。

       音频类似,如果解码得到的音频不能被SDL支持,需要对音频进行重采样,将音频帧格式转换为SDL支持的格式。

八、小结

       本文从整体播放流程出发,介绍了ffplay播放器播放媒体文件的主要流程,不深陷于代码细节。同时,对FFmpeg的一些常用函数有了一些了解,对我们自己手写一个简单的播放器有很大的帮助。

----------END----------

零基础读懂视频播放器控制原理: ffplay 播放器源代码分析

       视频播放器的工作原理基于对音视频帧序列的控制。不同播放器可能在音视频同步上采用更复杂的帧预测技术,以提升音频与视频的同步性。ffplay,作为FFmpeg自带的播放器,使用了FFmpeg解码库与用于视频渲染显示的SDL库。本文将详细分析ffplay源码,旨在用基础且系统的方法,解读音视频同步、播放/暂停、快进/后退等控制原理。

       相较于在移动端查看音视频代码,使用PC端通过VS进行查看和调试,能更高效迅速地分析播放器原理。由于ffplay在命令行界面的使用体验不够直观,本文将分析在CSDN上移植到VC的ffplay代码(ffplay for MFC)。

       文章将按照以下结构展开:

       一、解析MP4文件结构,理解视频文件的构成与参数。

       二、从最简单的播放器入手,分析FFmpeg解码与SDL显示流程。

       三、提出并解答五个关键问题,涉及音视频组合、同步、时间与帧数控制等。

       四、深入ffplay代码,从总体流程图入手,理解其代码结构。

       五、详细分析视频播放器的操作控制机制,包括关键结构体VideoState的作用,PTS和DTS的原理与应用,以及如何实现音视频同步。

       六、总结反思,强调基础概念、流程图与PC端调试的重要性。

       通过本文,我们将深入解析ffplay播放器的音视频播放与控制原理,旨在提供更直观、基础的解读方式,帮助读者理解和掌握视频播放器的核心技术。

flv.js源码知识点(下) FLV格式解析

       flv.js系列三:FLV格式解析

       此篇文章为flv.js源码知识点系列的终篇,旨在深入解析FLV文件的格式。在理解FLV文件数据结构及如何在JavaScript中读取特定二进制数据的基础上,文章将引导读者逐步构建对FLV文件解析的全面认知。

       FLV格式解析主要涉及两个关键部分:FLVHeader和FLVBody。FLVHeader为文件的前导部分,固定长度为9字节,其结构定义了文件的后续部分。FLVBody包含多个Tag,每个Tag由TagHeader和TagData组成,Tag的结构为字节,体现了FLV文件的层次化和可扩展性。

       在进行FLV文件解析时,二进制数据读取API显得尤为重要,特别是DateView类的使用。DateView允许以位级别访问ArrayBuffer中的数据,提供了读取、写入以及转换数据类型的能力,极大地简化了二进制数据的处理流程。

       具体而言,DateView提供了构造函数new DataView,用于指定数组缓冲区、偏移量和长度。获取数据时,可以通过getUint8、getUint等方法,灵活地读取不同长度的整数。此外,了解字节序(大字节序与小字节序)的概念及其对数据读取的影响,对于正确解析FLV文件至关重要。

       位操作是二进制数据处理的另一大利器,包括按位非、按位与、按位或、按位异或以及位移操作等。这些操作允许在位级别上进行复杂的数据提取和重组,对于处理如FLV标签中的时间戳拼接等特定场景尤为关键。

       最后,文章强调了结合FLV格式文档和二进制数据读取技术进行解析的重要性。通过解析每个字段,开发者可以有效地理解和处理FLV文件中的音视频数据,为后续的音视频解码、传输和播放提供坚实基础。

       通过本系列文章的学习,读者不仅掌握了flv.js源码的解析原理,还深入理解了FLV文件格式的内在结构与处理方法,为音视频开发工作打下坚实的技术基础。

WebRTC PeerConnection源码分析1-main window/附:WebRTC源码级深度解析,进阶大厂高级音视频开发者课程

       当前音视频行业蓬勃发展,WebRTC作为优秀的音视频开源库,广泛应用于各种音视频业务中。对于高级音视频开发者而言,掌握业务适用性改造能力至关重要。深入学习与分析WebRTC,从中汲取有益经验,对开发者而言具有极高的价值。

       本文基于WebRTC release-源码及云信音视频团队的经验,主要探讨以下问题:ADM(Audio Device Manager)架构解析、启动流程分析、数据流向解析。本文聚焦核心流程,旨在帮助开发者在有需求时快速定位相关模块。

       ADM架构解析

       在WebRTC中,ADM(Audio Device Manager)的行为由AudioDeviceModule定义,实现则由AudioDeviceModuleImpl提供。通过架构图可以看出,AudioDeviceModule全面规定了ADM的所有行为。AudioDeviceModule的主要职责在于管理音频设备的采集与播放。

       AudioDeviceModule由AudioDeviceModuleImpl实现,包含音频设备实例audio_device_和音频缓冲区audio_device_buffer_。audio_device_负责与具体平台的音频设备交互,audio_device_buffer_用于存储音频缓冲区数据,是与AudioDeviceModuleImpl中的audio_device_buffer_同一对象。AudioDeviceModuleImpl通过AttachAudioBuffer()方法将audio_device_buffer_传递给平台实现。

       音频缓冲区AudioDeviceBuffer包含play_buffer_与rec_buffer_,分别用于播放与采集音频数据。AudioTransport接口定义了向下获取播放与传递采集数据的核心方法。

       关于ADM扩展的思考

       在WebRTC实现中,主要关注硬件设备的实现,对于虚拟设备的支持不足。但在实际项目中,往往需要外部音频输入/输出支持。这可以通过在AudioDeviceModuleImpl中引入虚拟设备,实现与真实设备的切换或协同工作,简化了设备管理。

       ADM设备启动时机与流程

       ADM设备启动时机并不严格,通常在创建后即可启动。WebRTC源码中会在SDP协商后检查是否需要启动相关设备,根据需求启动采集或播放设备。启动流程涉及InitXXX与StartXXX方法,最终调用平台实现。

       关于设备停止

       了解启动过程后,设备停止逻辑与启动逻辑大体相似,主要涉及相关方法的调用。

       ADM音频数据流向

       音频数据发送核心流程涉及硬件采集、APM处理、RTP封装、网络发送等步骤。数据接收与播放则包括网络接收、解包、解码、混音与播放,整个流程清晰且高效。

音视频开发 (WebRTC、OpenGL、FFmpeg、ijkplayer、jsmpeg.....)源码解析!成为一名合格的音视频开发者!

       音视频开发,这一领域在近年来迅速崛起,成为了科技行业中的重要一环,特别是在5G技术的推动下,以及疫情带来的生活场景线上化趋势,使得在线办公、教育、娱乐等需求激增,各类线上互动平台用户数量暴增。音视频技术因此变得无处不在,其应用前景广阔,未来充满无限可能。

       对于想要学习或正在学习音视频开发的同学们,网络资源并不丰富。因此,我推荐两份高质量的音视频资料,《Android音视频开发进阶指南》和《音视频精编源码解析》,并附有音视频开发系列教程视频。通过这些资源,你可以系统性地学习音视频开发的核心技术。

       点击下方卡片,即可免费获取《Android音视频开发进阶指南》和《音视频精编源码解析》两份资料,以及音视频开发系列教程视频,助你更深入地了解音视频开发的奥秘。

       《Android音视频开发进阶指南》由五个章节构成,涵盖从Android音视频硬解码到直播系统聊天技术,再到阿里IM技术分享。每一章节深入浅出,带你掌握Android平台的音视频开发精髓。

       《音视频精编源码解析》则分为七个章节,涵盖WebRTC、X、FFmpeg、ijkplayer、jsmpeg、Live、Opus等源码解析,共页内容,让你对音视频技术底层实现有全面理解。

       音视频开发系列教程视频,是系统学习音视频开发的绝佳选择,内容涵盖从基础知识到实际应用,为你搭建从零开始到精通的完整知识体系。

       点击下方卡片,立刻领取音视频开发全套资料,开启你的音视频开发之旅!

Python爬虫腾讯视频m3u8格式分析爬取(附源码,高清无水印)

       为了解析并爬取腾讯视频的m3u8格式内容,我们首先需要使用Python开发环境,并通过开发者工具定位到m3u8文件的地址。在开发者工具中搜索m3u8,通常会发现包含多个ts文件的链接,这些ts文件是视频的片段。

       复制这些ts文件的URL,然后在新的浏览器页面打开URL链接,下载ts文件。一旦下载完成,打开文件,会发现它实际上是一个十几秒的视频片段。这意味着,m3u8格式的文件结构为我们提供了直接获取视频片段的途径。

       要成功爬取,我们需要找到m3u8文件的URL来源。一旦确定了URL,由于通常涉及POST请求,我们需要获取并解析对应的表单参数。接下来,我们将开始编写Python代码。

       首先,导入必要的Python库,如requests用于数据请求。接着,编写代码逻辑以请求目标URL并提取所需数据。遍历获取到的数据,将每个ts文件的URL保存或下载。最后,执行完整的爬虫代码,完成视频片段的爬取。

FFmpeg/WebRTC/RTMP音视频流媒体技术

       深入探索FFmpeg、WebRTC和RTMP的音视频流媒体技术,本文将逐步为您解析各个领域的重要知识点与实战技巧。

       首先,音视频基础知识不容忽视。对于FFMPEG环境搭建,无论是Windows还是Linux平台,我们都应熟练掌握。此外,深入理解音频与视频的基础,使用如Medialnfo与VLC播放器等常用工具,将使我们对音视频处理有更全面的认识。

       接下来,FFMPEG命令是音频、视频处理的利器,涵盖视频录制、多媒体文件分解与复用、裁剪与合并、与视频互转、直播相关操作,以及各种滤镜应用。编程实战中,音视频渲染需借助SDL环境,包括事件处理、线程操作、YUV视频播放与PCM声音播放。FFmpeg API的框架、内存模型与常用结构体,构成了更深层次的音视频处理能力。音视频编码领域,AAC与H编解码原理、解码与编码流程深入解析,使我们掌握音视频编码的核心。封装格式如FLV、MP4与多媒体转封装格式实战,是音视频分发的关键。音视频过滤器实战则聚焦于音视频过滤器的使用,包括视频过滤器的详细说明。播放器开发实战涉及播放器框架分析、音视频解码、播放控制与同步,掌握ffmpeg播放器源码解析,如ffplay.c中的意义,将使我们全面掌握播放器开发。

       流媒体技术的深入理解是音视频技术的关键。了解RTMP、HLS、HTTP-FLV等流媒体协议,wireshark抓包技术,FFmpeg在流媒体服务器中的应用,以及首屏秒开技术、负载均衡部署方式,将使我们能够构建高效、稳定的流媒体服务。

       最后,WebRTC技术的发展与应用是音视频领域的一大亮点。从中级开发到高级开发,深入研究WebRTC通话原理,搭建开发环境,配置coturn服务器,采集音视频数据,理解一对一会话流程,设计信令服务器,实现Web与Android、iOS间的通话,掌握AppRTC,将使您成为WebRTC开发的专家。高级开发中,自定义摄像头分辨率、调整编码器顺序、实现多方通话、利用Janus框架构建会议系统,以及理解拥塞控制算法、FEC、jitter buffer等,将使您的WebRTC项目更具竞争力。

       本文旨在为您提供FFmpeg、WebRTC与RTMP音视频流媒体技术的全面解析与实战指导,更多音视频相关信息,欢迎继续探索与实践。