1.每天读点官方文档之pytest (1)
2.深入理解Linux的盲猜盲猜epoll机制
3.如何阅读源码 —— 以 Vetur 为例
每天读点官方文档之pytest (1)
注:内容不全和官方文档相同,只是源码按照官方文档顺序随心记录,与诸位做参考而已。盲猜盲猜
开始安装pytest使用命令
pip install -U pytest
即可安装pytest。源码使用
pytest --version
可以确认pytest安装是盲猜盲猜否成功以及安装的版本。整体测试环境如下:
创建第一个测试注意上下两次执行结果的源码源码集合的运算不同,pytest默认不打印print的盲猜盲猜内容,如果需要打印,源码需要添加-s参数。盲猜盲猜下面是源码正常执行的过程内容:修改测试用例新增test_fun2 test_fun3和test_fun4函数,部分内容为下面的盲猜盲猜内容:执行结果为:接下来来一起分析一下报错。断言一个确定的源码异常如果一个异常是我们已经确定的了,可以指定异常,盲猜盲猜从而能跳过异常判断。源码整体的盲猜盲猜输出如下,请结合代码中的解释自行分析输出结果。使用class编组测试如果有一组测试用例可以进行分组,那么可以将测试用例放进class中,比如下面这样接下来我所有的用例执行都会使用pycharm进行手动执行,事例的格式有些不同,但是整体思路是相同的。安装pytest后,pycharm会在每个可以执行的用例左边有一个绿色三角的运行标志。使用那个标志运行即可,pycharm运行时添加了一些参数,我这里先说一下,之后我就只截取显示部分,其余部分诸君请自行尝试。这里我点的是TestClass左边的绿色执行按钮。现在我们将测试用例进行修改,再执行一下试试。输出如下,请诸君自行分析输出的信息。需要注意的一点是,虽然将几个方法进行分组了,但是几个方法之间并不能共享修改的变量,这里使用官方的一个例子说明。输出结果为:可以看到虽然test_sample.py::TestClass::test_func1先执行了,但是test_sample.py::TestClass::test_func2依旧失败了,self.value的值依旧是0 这是为什么呢?给上面的代码增加一些东西继续执行TestClass然后查看record_list.txt内容如下:根据内存地址的不同,可以看到两个case执行了两个不同的类,也就是说是两个单独的事例,也就是func1修改的只是func1实例的self.value没有影响到func2的实例,所以导致func2的self.value还是默认的0,于是失败了。至于如果在类间传递变量也是有方法的,还是需要使用pytest提供的方法。对于上面失败的原因,本人盲猜是因为pytest内部使用了多线程,每个测试用例一个线程去跑,当然具体原因还是有时间的时候看看源代码再了解吧。注意:RecordClass中的record_list能够不断写入的原因是因为record_list是一个可变类型,如果TestClass的lmtoken钱包源码value属性也是可变类型也会不断存入数据。具体原因请各位自行查阅,这里不在赘述。pytest内置的参数pytest包含很多内置参数,提供给需求的开发者调用,这里使用官网的例子举例,具体的查看地址为 Builtin fixtures/function arguments。其中tmpdir就是pytest提供的一个内置参数。整体函数执行的结果如下:可以看到已经把临时目录打印出来了。如果想通过命令行确认含有哪些内置属性或者手动定制属性都可以通过pytest --fixtures进行查询。
深入理解Linux的epoll机制
在Linux系统之中有一个核心武器:epoll池,在高并发的,高吞吐的IO系统中常常见到epoll的身影。IO多路复用在Go里最核心的是Goroutine,也就是所谓的协程,协程最妙的一个实现就是异步的代码长的跟同步代码一样。比如在Go中,网络IO的read,write看似都是同步代码,其实底下都是异步调用,一般流程是:
write(/*IO参数*/)请求入队等待完成后台loop程序发送网络请求唤醒业务方Go配合协程在网络IO上实现了异步流程的同步代码化。核心就是用epoll池来管理网络fd。
实现形式上,后台的程序只需要1个就可以负责管理多个fd句柄,负责应对所有的业务方的IO请求。这种一对多的IO模式我们就叫做IO多路复用。
多路是指?多个业务方(句柄)并发下来的IO。
复用是指?复用这一个后台处理程序。
站在IO系统设计人员的角度,业务方咱们没办法提要求,因为业务是上帝,只有你服从的份,他们要创建多个fd,那么你就需要负责这些fd的处理,并且最好还要并发起来。
业务方没法提要求,那么只能要求后台loop程序了!
要求什么呢?快!快!快!这就是最核心的要求,处理一定要快,要给每一个fd通道最快的感受,要让每一个fd觉得,你只在给他一个人跑腿。
那有人又问了,那我一个IO请求(比如write)对应一个线程来处理,这样所有的IO不都并发了吗?是可以,但是有瓶颈,线程数一旦多了,性能是反倒会差的。
这里不再对比多线程和IO多路复用实现高并发之间的区别,详细的nacos修改源码可以去了解下nginx和redis高并发的秘密。
最朴实的实现方式?我不用任何其他系统调用,能否实现IO多路复用?
可以的。那么写个for循环,每次都尝试IO一下,读/写到了就处理,读/写不到就sleep下。这样我们不就实现了1对多的IO多路复用嘛。
whileTrue:foreach句柄数组{ read/write(fd,/*参数*/)}sleep(1s)慢着,有个问题,上面的程序可能会被卡死在第三行,使得整个系统不得运行,为什么?
默认情况下,我们没有加任何参数create出的句柄是阻塞类型的。我们读数据的时候,如果数据还没准备好,是会需要等待的,当我们写数据的时候,如果还没准备好,默认也会卡住等待。所以,在上面伪代码第三行是可能被直接卡死,而导致整个线程都得到不到运行。
举个例子,现在有,,这3个句柄,现在读写都没有准备好,只要read/write(,/*参数*/)就会被卡住,但,这两个句柄都准备好了,那遍历句柄数组,,的时候就会卡死在前面,后面,则得不到运行。这不符合我们的预期,因为我们IO多路复用的loop线程是公共服务,不能因为一个fd就直接瘫痪。
那这个问题怎么解决?
只需要把fd都设置成非阻塞模式。这样read/write的时候,如果数据没准备好,返回EAGIN的错误即可,不会卡住线程,从而整个系统就运转起来了。比如上面句柄还未就绪,那么read/write(,/*参数*/)不会阻塞,只会报个EAGIN的错误,这种错误需要特殊处理,然后loop线程可以继续执行,的读写。
以上就是最朴实的IO多路复用的实现了。但是blender源码优化好像在生产环境没见过这种IO多路复用的实现?为什么?
因为还不够高级。for循环每次要定期sleep1s,这个会导致吞吐能力极差,因为很可能在刚好要sleep的时候,所有的fd都准备好IO数据,而这个时候却要硬生生的等待1s,可想而知。。。
那有同学又要质疑了,那for循环里面就不sleep嘛,这样不就能及时处理了吗?
及时是及时了,但是CPU估计要跑飞了。不加sleep,那在没有fd需要处理的时候,估计CPU都要跑到%了。这个也是无法接受的。
纠结了,那sleep吞吐不行,不sleep浪费cpu,怎么办?
这种情况用户态很难有所作为,只能求助内核来提供机制协助来。因为内核才能及时的管理这些通知和调度。
我们再梳理下IO多路复用的需求和原理。IO多路复用就是1个线程处理多个fd的模式。我们的要求是:这个“1”就要尽可能的快,避免一切无效工作,要把所有的时间都用在处理句柄的IO上,不能有任何空转,sleep的时间浪费。
有没有一种工具,我们把一箩筐的fd放到里面,只要有一个fd能够读写数据,后台loop线程就要立马唤醒,全部马力跑起来。其他时间要把cpu让出去。
能做到吗?能,这种需求只能内核提供机制满足你。
这事Linux内核必须要给个说法?是的,想要不用sleep这种辣眼睛的实现,Linux内核必须出手了,毕竟IO的处理都是内核之中,数据好没好内核最清楚。
内核一口气提供了3种工具select,poll,epoll。
为什么有3种?
历史不断改进,矬->较矬->卧槽、高效的演变而已。
Linux还有其他方式可以实现IO多路复用吗?
好像没有了!
这3种到底是做啥的?
这3种都能够管理fd的可读可写事件,在所有fd不可读不可写无所事事的时候,可以阻塞线程,nasa网站源码切走cpu。fd有情况的时候,都要线程能够要能被唤醒。
而这三种方式以epoll池的效率最高。为什么效率最高?
其实很简单,这里不详说,其实无非就是epoll做的无用功最少,select和poll或多或少都要多余的拷贝,盲猜(遍历才知道)fd,所以效率自然就低了。
举个例子,以select和epoll来对比举例,池子里管理了个句柄,loop线程被唤醒的时候,select都是蒙的,都不知道这个fd里谁IO准备好了。这种情况怎么办?只能遍历这个fd,一个个测试。假如只有一个句柄准备好了,那相当于做了1千多倍的无效功。
epoll则不同,从epoll_wait醒来的时候就能精确的拿到就绪的fd数组,不需要任何测试,拿到的就是要处理的。
epoll池原理下面我们看一下epoll池的使用和原理。
epoll涉及的系统调用epoll的使用非常简单,只有下面3个系统调用。
epoll_createepollctlepollwait就这?是的,就这么简单。
epollcreate负责创建一个池子,一个监控和管理句柄fd的池子;
epollctl负责管理这个池子里的fd增、删、改;
epollwait就是负责打盹的,让出CPU调度,但是只要有“事”,立马会从这里唤醒;
epoll高效的原理Linux下,epoll一直被吹爆,作为高并发IO实现的秘密武器。其中原理其实非常朴实:epoll的实现几乎没有做任何无效功。我们从使用的角度切入来一步步分析下。
首先,epoll的第一步是创建一个池子。这个使用epoll_create来做:
原型:
intepoll_create(intsize);示例:
epollfd=epoll_create();if(epollfd==-1){ perror("epoll_create");exit(EXIT_FAILURE);}这个池子对我们来说是黑盒,这个黑盒是用来装fd的,我们暂不纠结其中细节。我们拿到了一个epollfd,这个epollfd就能唯一代表这个epoll池。
然后,我们就要往这个epoll池里放fd了,这就要用到epoll_ctl了
原型:
intepoll_ctl(intepfd,intop,intfd,structepoll_event*event);示例:
if(epoll_ctl(epollfd,EPOLL_CTL_ADD,,&ev)==-1){ perror("epoll_ctl:listen_sock");exit(EXIT_FAILURE);}上面,我们就把句柄放到这个池子里了,op(EPOLL_CTL_ADD)表明操作是增加、修改、删除,event结构体可以指定监听事件类型,可读、可写。
第一个跟高效相关的问题来了,添加fd进池子也就算了,如果是修改、删除呢?怎么做到时间快?
这里就涉及到你怎么管理fd的数据结构了。
最常见的思路:用list,可以吗?功能上可以,但是性能上拉垮。list的结构来管理元素,时间复杂度都太高O(n),每次要一次次遍历链表才能找到位置。池子越大,性能会越慢。
那有简单高效的数据结构吗?
有,红黑树。Linux内核对于epoll池的内部实现就是用红黑树的结构体来管理这些注册进程来的句柄fd。红黑树是一种平衡二叉树,时间复杂度为O(logn),就算这个池子就算不断的增删改,也能保持非常稳定的查找性能。
现在思考第二个高效的秘密:怎么才能保证数据准备好之后,立马感知呢?
epoll_ctl这里会涉及到一点。秘密就是:回调的设置。在epoll_ctl的内部实现中,除了把句柄结构用红黑树管理,另一个核心步骤就是设置poll回调。
思考来了:poll回调是什么?怎么设置?
先说说file_operations->poll是什么?
在fd篇说过,Linux设计成一切皆是文件的架构,这个不是说说而已,而是随处可见。实现一个文件系统的时候,就要实现这个文件调用,这个结构体用structfile_operations来表示。这个结构体有非常多的函数,我精简了一些,如下:
structfile_operations{ ssize_t(*read)(structfile*,char__user*,size_t,loff_t*);ssize_t(*write)(structfile*,constchar__user*,size_t,loff_t*);__poll_t(*poll)(structfile*,structpoll_table_struct*);int(*open)(structinode*,structfile*);int(*fsync)(structfile*,loff_t,loff_t,intdatasync);//....};你看到了read,write,open,fsync,poll等等,这些都是对文件的定制处理操作,对于文件的操作其实都是在这个框架内实现逻辑而已,比如ext2如果有对read/write做定制化,那么就会是ext2_read,ext2_write,ext4就会是ext4_read,ext4_write。在open具体“文件”的时候会赋值对应文件系统的file_operations给到file结构体。
那我们很容易知道read是文件系统定制fd读的行为调用,write是文件系统定制fd写的行为调用,file_operations->poll呢?
这个是定制监听事件的机制实现。通过poll机制让上层能直接告诉底层,我这个fd一旦读写就绪了,请底层硬件(比如网卡)回调的时候自动把这个fd相关的结构体放到指定队列中,并且唤醒操作系统。
举个例子:网卡收发包其实走的异步流程,操作系统把数据丢到一个指定地点,网卡不断的从这个指定地点掏数据处理。请求响应通过中断回调来处理,中断一般拆分成两部分:硬中断和软中断。poll函数就是把这个软中断回来的路上再加点料,只要读写事件触发的时候,就会立马通知到上层,采用这种事件通知的形式就能把浪费的时间窗就完全消失了。
划重点:这个poll事件回调机制则是epoll池高效最核心原理。
划重点:epoll池管理的句柄只能是支持了file_operations->poll的文件fd。换句话说,如果一个“文件”所在的文件系统没有实现poll接口,那么就用不了epoll机制。
第二个问题:poll怎么设置?
在epoll_ctl下来的实现中,有一步是调用vfs_poll这个里面就会有个判断,如果fd所在的文件系统的file_operations实现了poll,那么就会直接调用,如果没有,那么就会报告响应的错误码。
staticinline__poll_tvfs_poll(structfile*file,structpoll_table_struct*pt){ if(unlikely(!file->f_op->poll))returnDEFAULT_POLLMASK;returnfile->f_op->poll(file,pt);}你肯定好奇poll调用里面究竟是实现了什么?
总结概括来说:挂了个钩子,设置了唤醒的回调路径。epoll跟底层对接的回调函数是:ep_poll_callback,这个函数其实很简单,做两件事情:
把事件就绪的fd对应的结构体放到一个特定的队列(就绪队列,readylist);
唤醒epoll,活来啦!
当fd满足可读可写的时候就会经过层层回调,最终调用到这个回调函数,把对应fd的结构体放入就绪队列中,从而把epoll从epoll_wait出唤醒。
这个对应结构体是什么?
结构体叫做epitem,每个注册到epoll池的fd都会对应一个。
就绪队列很高级吗?
就绪队列就简单了,因为没有查找的需求了呀,只要是在就绪队列中的epitem,都是事件就绪的,必须处理的。所以就绪队列就是一个最简单的双指针链表。
小结下:epoll之所以做到了高效,最关键的两点:
内部管理fd使用了高效的红黑树结构管理,做到了增删改之后性能的优化和平衡;
epoll池添加fd的时候,调用file_operations->poll,把这个fd就绪之后的回调路径安排好。通过事件通知的形式,做到最高效的运行;
epoll池核心的两个数据结构:红黑树和就绪列表。红黑树是为了应对用户的增删改需求,就绪列表是fd事件就绪之后放置的特殊地点,epoll池只需要遍历这个就绪链表,就能给用户返回所有已经就绪的fd数组;
哪些fd可以用epoll来管理?再来思考另外一个问题:由于并不是所有的fd对应的文件系统都实现了poll接口,所以自然并不是所有的fd都可以放进epoll池,那么有哪些文件系统的file_operations实现了poll接口?
首先说,类似ext2,ext4,xfs这种常规的文件系统是没有实现的,换句话说,这些你最常见的、真的是文件的文件系统反倒是用不了epoll机制的。
那谁支持呢?
最常见的就是网络套接字:socket。网络也是epoll池最常见的应用地点。Linux下万物皆文件,socket实现了一套socket_file_operations的逻辑(net/socket.c):
staticconststructfile_operationssocket_file_ops={ .read_iter=sock_read_iter,.write_iter=sock_write_iter,.poll=sock_poll,//...};我们看到socket实现了poll调用,所以socketfd是天然可以放到epoll池管理的。
还有吗?
有的,其实Linux下还有两个很典型的fd,常常也会放到epoll池里。
eventfd:eventfd实现非常简单,故名思义就是专门用来做事件通知用的。使用系统调用eventfd创建,这种文件fd无法传输数据,只用来传输事件,常常用于生产消费者模式的事件实现;
timerfd:这是一种定时器fd,使用timerfd_create创建,到时间点触发可读事件;
小结一下:
ext2,ext4,xfs等这种真正的文件系统的fd,无法使用epoll管理;
socketfd,eventfd,timerfd这些实现了poll调用的可以放到epoll池进行管理;
其实,在Linux的模块划分中,eventfd,timerfd,epoll池都是文件系统的一种模块实现。
思考前面我们已经思考了很多知识点,有一些简单有趣的知识点,提示给读者朋友,这里只抛砖引玉。
问题:单核CPU能实现并行吗?
不行。
问题:单线程能实现高并发吗?
可以。
问题:那并发和并行的区别是?
一个看的是时间段内的执行情况,一个看的是时间时刻的执行情况。
问题:单线程如何做到高并发?
IO多路复用呗,今天讲的epoll池就是了。
问题:单线程实现并发的有开源的例子吗?
redis,nginx都是非常好的学习例子。当然还有我们Golang的runtime实现也尽显高并发的设计思想。
总结IO多路复用的原始实现很简单,就是一个1对多的服务模式,一个loop对应处理多个fd;
IO多路复用想要做到真正的高效,必须要内核机制提供。因为IO的处理和完成是在内核,如果内核不帮忙,用户态的程序根本无法精确的抓到处理时机;
fd记得要设置成非阻塞的哦,切记;
epoll池通过高效的内部管理结构,并且结合操作系统提供的poll事件注册机制,实现了高效的fd事件管理,为高并发的IO处理提供了前提条件;
epoll全名eventpoll,在Linux内核下以一个文件系统模块的形式实现,所以有人常说epoll其实本身就是文件系统也是对的;
socketfd,eventfd,timerfd这三种”文件“fd实现了poll接口,所以网络fd,事件fd,定时器fd都可以使用epoll_ctl注册到池子里。我们最常见的就是网络fd的多路复用;
ext2,ext4,xfs这种真正意义的文件系统反倒没有提供poll接口实现,所以不能用epoll池来管理其句柄。那文件就无法使用epoll机制了吗?不是的,有一个库叫做libaio,通过这个库我们可以间接的让文件使用epoll通知事件,以后详说,此处不表;
后记epoll池使用很简洁,但实现不简单。还是那句话,Linux内核帮你包圆了。
今天并没有罗列源码实现,以很小的思考点为题展开,简单讲了一些epoll的思考,以后有机会可以分享下异步IO(aio)和epoll能产生什么火花?Golang是怎样使用epoll池的?敬请期待哦。
原创不易,更多干货,关注:奇伢云存储
如何阅读源码 —— 以 Vetur 为例
深入探索前端框架源码,Vetur是我们的实践平台。提升技能之路并非易事,但掌握技巧和原则将事半功倍。以下是阅读Vetur源码的实用指南:明确目标与SMART原则
开始阅读前,明确你的动机,如理解功能或修复bug。SMART原则要求目标具体、可衡量,比如研究Vetur的模板错误提示功能。 评估与管理 判断阅读的必要性和价值,切勿盲目追求完整,局部学习也能带来进步。适时调整目标,如只关注插件的特定部分。 项目背景与准备工作 在阅读前,了解项目背景,包括框架结构、IO交互和生态,以及调试方法。例如,理解Vetur与VS Code的互动,以及如何通过生态补充核心功能。 VSCore插件基础 熟悉Vetur在VS Code中的开发基础,包括package.json、contributes和主入口,这些都是构建插件的关键要素。 分析与理解步骤 遵循六步循环:理解项目结构、找寻关键点、查阅文档、分析代码、总结与深入研究。从入口开始,如Vetur的languages和grammars配置,一步步揭示实现细节。 关键配置文件解析 探究contributes.languages中的Vue配置,以及contributes.grammars如何定义语言规则,如注释符号、折叠和TextMate语法。 深入洞察VS Code的主入口 通过package.json,理解Vetur如何通过LSP协议提供高级功能,如vueMain.js的activate方法。 简化学习路径 将复杂项目分解为小目标,如聚焦代码补全的核心技术,通过yarn watch和F5调试来验证理解。 学习策略与实践 选择有针对性的学习点,如代码补全,通过搜索引擎获取资料,运用静态猜想和动态验证方法。总结成流程图,记录笔记,灵活调整学习策略,找到适合自己的方法。 总结与提炼 将源码分析归纳为步或更少,形成清晰的流程图。记住,学习是个个性化过程,关键在于明确目标、分层次学习和持续总结。最后的忠告
阅读Vetur源码的过程并不轻松,但每一次的深入探索都为技能提升添砖加瓦。保持耐心,设定明确目标,你会发现一个全新的技术世界在等待你的探索。