1.让你的源码源码Golang项目在IDE里跑起来(Goland使用入门-GOROOT、GOPATH、解析src、源码源码 pkg、解析bin、源码源码import)
2.golang源码系列---手把手带你看heap实现
3.golang map 源码解读(8问)
4.golang的解析驾考小程序源码对象池sync.pool源码解读
5.å¦ä½ç¼è¯arm linuxçgo
6.golang源码系列---手把手带你看list实现
让你的Golang项目在IDE里跑起来(Goland使用入门-GOROOT、GOPATH、源码源码src、解析 pkg、源码源码bin、解析import)
启动你的源码源码Golang项目,避免反复配置的解析困扰,理解并掌握GOROOT、源码源码GOPATH、解析src、源码源码pkg和bin这几个关键目录至关重要。首先,一个基本的项目结构包括src目录存放源代码,bin存放编译后的可执行文件,而pkg则存放编译后的包文件。bin和pkg通常由go命令自动生成,你只需创建src来存放项目代码。
创建一个简单的项目,例如命名为main,包含main.go文件。内容如下:
创建好项目后,接下来就是在Goland中配置。你需要设置GOROOT,指向你的Go安装路径,这类似Java的JAVA_HOME。同时,配置GOPATH,指定你的项目源代码的根目录。
Goland中,有两种GOPATH配置:Project GOPATH针对每个项目独立,Global GOPATH则适用于共享第三方包。在ToolBar的配置中,选择运行文件时,指定main.go所在的文件夹,输出文件夹为src的同级bin目录,工作目录即设置的GOPATH。
注意,如果在多个项目中频繁切换,保护程序源码不要修改配置框中的目录,否则可能导致运行错误。例如,你可以这样配置:
点击保存并运行,成功后你会看到bin目录自动创建。若需自定义输出文件名,可使用-o参数。
在项目中引用其他模块或第三方包时,只需将相关代码放入src的子目录中,如添加一个calc文件夹下的add.go。注意,包名和文件夹名一致,函数名不因文件名改变而改变。
对于第三方包的引用,如common库,只需在main中导入并调用即可。更多关于vendor工具的使用,可以关注我的后续更新。
以上内容参考了《小议并实战go包------顺便说说go中的GOROOT,GOPATH和src,pkg,bin》一文,由OpenWrite博客发布。
golang源码系列---手把手带你看heap实现
heap包定义实现堆所需结构与操作方法,包含Interface接口,允许实现堆功能。Push和Pop方法分别用于添加元素与移除堆顶元素。
构建堆时需实现sort.Interface接口。Heap包内部仅包含两个非导出函数,作为堆导出方法的基础。
down函数将堆顶元素下沉,保持堆结构。up函数则将当前节点上浮,确保堆的性质。
Init函数初始化堆结构。Push与Pop方法用于添加与移除元素,底层依赖up和down函数。
Remove方法移除指定位置元素,类似Pop,通过上浮下沉操作恢复堆结构。
Fix函数在节点值变化后,用于修复堆结构。
使用案例:以学生信息为例,根据年龄排序,并按升序输出。jdbc 源码解析
总结:heap包提供实现堆所需的接口与方法,通过非导出函数与导出方法的配合,完成堆的操作与构建。实例化堆后,可根据具体需求使用Push、Pop、Remove与Fix方法,实现元素的添加、删除与结构修复。
golang map 源码解读(8问)
map底层数据结构为hmap,包含以下几个关键部分:
1. buckets - 指向桶数组的指针,存储键值对。
2. count - 记录key的数量。
3. B - 桶的数量的对数值,用于计算增量扩容。
4. noverflow - 溢出桶的数量,用于等量扩容。
5. hash0 - hash随机值,增加hash值的随机性,减少碰撞。
6. oldbuckets - 扩容过程中的旧桶指针,判断桶是否在扩容中。
7. nevacuate - 扩容进度值,小于此值的已经完成扩容。
8. flags - 标记位,用于迭代或写操作时检测并发场景。
每个桶数据结构bmap包含8个key和8个value,以及8个tophash值,用于第一次比对。
overflow指向下一个桶,桶与桶形成链表存储key-value。
结构示意图在此。
map的初始化分为3种,具体调用的函数根据map的初始长度确定:
1. makemap_small - 当长度不大于8时,只创建hmap,不初始化buckets。
2. makemap - 当长度参数为int时,底层调用makemap。
3. makemap - 初始化hash0,计算对数B,并初始化buckets。
map查询底层调用mapaccess1或mapaccess2,卡片游戏源码前者无key是否存在的bool值,后者有。
查询过程:计算key的hash值,与低B位取&确定桶位置,获取tophash值,比对tophash,相同则比对key,获得value,否则继续寻找,直至返回0值。
map新增调用mapassign,步骤包括计算hash值,确定桶位置,比对tophash和key值,插入元素。
map的扩容有两种情况:当count/B大于6.5时进行增量扩容,容量翻倍,渐进式完成,每次最多2个bucket;当count/B小于6.5且noverflow大于时进行等量扩容,容量不变,但分配新bucket数组。
map删除元素通过mapdelete实现,查找key,计算hash,找到桶,遍历元素比对tophash和key,找到后置key,value为nil,修改tophash为1。
map遍历是无序的,依赖mapiterinit和mapiternext,选择一个bucket和offset进行随机遍历。
在迭代过程中,可以通过修改元素的key,value为nil,设置tophash为1来删除元素,不会影响遍历的顺序。
golang的对象池sync.pool源码解读
Go语言对象池sync.pool源码深度解析
对象池在Go语言中被设计用于解决频繁创建和销毁对象导致的性能问题。sync.pool的核心理念是复用已创建对象,减轻垃圾收集(GC)压力。以下是关键点的理解和代码分析:对象池的动机
新对象的创建会消耗内存,并可能对GC造成负担。sync.pool就是为了解决这个问题,通过预先创建和存储对象,java 娱乐源码减少创建成本,提高性能。池与缓存的相似性
无论是连接池、线程池还是对象池,它们都体现了池化和缓存的思想:复用资源,减少临时创建,提升响应速度。池化和缓存都是为了减少资源消耗,提升服务效率。go1.原理与用法
对象池使用简单,通过New函数创建,Get和Put操作实现对象的复用。go1.之前的版本可能频繁清空池,导致性能损失。1.改进了设计,引入了victim cache机制,通过双向链表优化获取和存储对象,减少锁竞争。源码解析
从pool的结构体可以看到,victim和victimSize用于管理受害缓存,popTail函数通过无锁操作处理链表,保证了高性能。put操作时,根据对象状态决定放入private或shared区域。总结
对象池通过复用对象、提前准备和性能优化的存储提高性能。理解对象池的关键在于:复用、存储策略和并发控制。在Go 1.中,通过victim cache和链表操作,进一步提升了性能和并发处理能力。深入理解
理解对象池的细节包括如何禁用抢占P以防止GC影响,以及如何通过noCopy防止对象拷贝导致的潜在问题。同时,伪共享的处理也是优化对象池性能的关键点。 持续学习和实践是技术成长的基石,让我们保持对技术的热情,不断探索和优化。å¦ä½ç¼è¯arm linuxçgo
Golangä¹å°±æ¯Goè¯è¨ï¼ç°å¨å·²ç»åè¡å°1.4.1çæ¬äºï¼è¯è¨ç¹æ§ä¼è¶æ§åèåGoogle强大é å±±ä»ä¹çå°±ä¸å¤è¯´äºãGolangçå®æ¹æä¾äºå¤ä¸ªå¹³å°ä¸çäºè¿å¶å®è£ å ï¼éæ¾çæ¯å¹¶é没æåå¸ARMå¹³å°çäºè¿å¶å®è£ å ãARMå¹³å°æ²¡åæ³ç´æ¥ä»å®ç½ä¸è½½äºè¿å¶å®è£ å æ¥å®è£ ï¼å¥½å¨Golangæ¯æ¯æå¤å¹³å°å¹¶ä¸å¼æºçè¯è¨ï¼å æ¤å¯ä»¥éè¿ç´æ¥å¨ARMå¹³å°ä¸ç¼è¯æºä»£ç æ¥å®è£ ãæ´ä¸ªè¿ç¨ä¸»è¦å æ¬ç¼è¯å·¥å ·é ç½®ãè·åGolangæºä»£ç ã设置Golangç¼è¯ç¯å¢åéãç¼è¯ãé ç½®Golangè¡ç¯å¢åéçæ¥éª¤ã
注ï¼æ¬æéç¨æ èæ´¾åæµè¯ï¼å 为æ èæ´¾æ¯åºäºARMå¹³å°çã
1ãç¼è¯å·¥å ·é ç½®
æ®è¯´ä¸ä¸ªçæ¬çgolangç¼è¯å·¥å ·è¦ä½¿ç¨golangèªå·±æ¥åï¼ä½ç®åè¿æ¯ä½¿ç¨Cç¼è¯å·¥å ·çãå æ¤ï¼é¦å è¦é 置好Cç¼è¯å·¥å ·ï¼
1.1 å¨UbuntuæDebianå¹³å°ä¸å¯ä»¥ä½¿ç¨sudo apt-get install gcc libc6-devå½ä»¤å®è£ ï¼æ èæ´¾çRaspBianç³»ç»æ¯åºäºDebianä¿®æ¹çï¼æ以å¯ä»¥ä½¿ç¨è¿ç§æ¹æ³å®è£ ã
1.2 å¨RedHatæCentOS 6å¹³å°ä¸å¯ä»¥ä½¿ç¨sudo yum install gcc libc-develå½ä»¤å®è£ ã
å®è£ å®æåå¯ä»¥è¾å ¥ gcc --versionå½ä»¤éªè¯æ¯å¦æåå®è£ ã
2ãè·ågolangæºä»£ç
2.1 ç´æ¥ä»å®ç½ä¸è½½æºä»£ç å缩å ã
golangå®ç½æä¾golangçæºä»£ç å缩å ï¼å¯ä»¥ç´æ¥ä¸è½½ï¼ææ°ç1.4.1çæ¬æºä»£ç é¾æ¥ï¼/golang/go1.4.1.src.tar.gz
2.2 使ç¨gitå·¥å ·è·åã
golang使ç¨gitçæ¬ç®¡çå·¥å ·ï¼ä¹å¯ä»¥ä½¿ç¨gitè·ågolangæºä»£ç ãæ¨è使ç¨è¿ä¸ªæ¹æ³ï¼å 为以åå¯ä»¥éæ¶è·åææ°çgolangæºä»£ç ã
2.2.1 é¦å 确认ARMå¹³å°ä¸å·²ç»å®è£ äºgitå·¥å ·ï¼å¯ä»¥ä½¿ç¨git --versionå½ä»¤ç¡®è®¤ãä¸è¬linuxå¹³å°é½å®è£ äºgitï¼æ²¡æçè¯å¯ä»¥èªè¡å®è£ ï¼ä¸åå¹³å°çå®è£ æ¹æ³å¯ä»¥åèï¼/download/linux
2.2.2 å éè¿ç¨golangçgitä»åºå°æ¬å°
å¨ç»ç«¯cdå°ä½ æ³è¦å®è£ golangçç®å½ï¼ç¡®ä¿è¯¥ç®å½ä¸æ²¡æå为goçç®å½ãç¶å以ä¸å½ä»¤è·å代ç ä»åºï¼
git clone /go
大éå°åºå¯è½ä¼è·å失败ï¼å¨ä¸ç¿»å¢çæ åµä¸æè¯äºå 次é½æ²¡æåï¼åå 大家é½æçã好å¨googleå·²ç»å°golangä¹æ管å°githubä¸é¢ï¼æ以ä¹å¯ä»¥éè¿ä¸é¢å½ä»¤è·åï¼
git clone /golang/go.git
è§ç½ç»æ åµï¼ä¸è½½å¯è½éè¦ä¸å°æ¶é´ãæ2Mç带宽è±äºå°è¿ä¸¤ä¸ªå°æ¶æä¸è½½å®ï¼è½ç¶æ´ä¸ªé¡¹ç®ä¸è¿å åå = =
ä¸è½½å®æåï¼å¯ä»¥çå°ç®å½ä¸å¤äºä¸ä¸ªgoç®å½ï¼éé¢å³ä¸ºgolangçæºä»£ç ï¼å¨ç»ç«¯ä¸æ§è¡cd goå½ä»¤è¿å ¥è¯¥ç®å½ã
æ§è¡ä¸é¢å½ä»¤æ£åºgo1.4.1çæ¬çæºä»£ç ï¼å 为ç°å¨å·²ç»ææ°ç代ç æ交ä¸å»äºï¼ææ°ç代ç å¯è½ä¸æ¯æ稳å®çï¼
git checkout go1.4.1
è³æ¤ï¼ææ°1.4.1åè¡ççæºä»£ç è·åå®æ¯
3ã设置golangçç¼è¯ç¯å¢åé
主è¦æGOROOTãGOOSãGOARCHãGOARMå个ç¯å¢åééè¦è®¾ç½®ï¼å 解éå个ç¯å¢åéçæä¹ã
3.1 GOROOT
主è¦ä»£è¡¨golangæ ç»æç®å½çè·¯å¾ï¼ä¹å°±æ¯ä¸é¢gitæ£åºçgoç®å½ãä¸è¬å¯ä»¥ä¸ç¨è®¾ç½®è¿ä¸ªç¯å¢åéï¼å 为ç¼è¯çæ¶åé»è®¤ä¼ä»¥goç®å½ä¸srcåç®å½ä¸çall.bashèæ¬è¿è¡æ¶çç¶ç®å½ä½ä¸ºGOROOTçå¼ã为äºä¿é©èµ·è§ï¼å¯ä»¥ç´æ¥è®¾ç½®ä¸ºgoç®å½çè·¯å¾ã
3.2 GOOSåGOARCH
åå«ä»£è¡¨ç¼è¯çç®æ ç³»ç»åå¹³å°ï¼å¯éå¼å¦ä¸ï¼
GOOS GOARCH
darwin
darwin amd
dragonfly
dragonfly amd
freebsd
freebsd amd
freebsd arm
linux
linux amd
linux arm
netbsd
netbsd amd
netbsd arm
openbsd
openbsd amd
plan9
plan9 amd
solaris amd
windows
windows amd
éè¦æ³¨æçæ¯è¿ä¸¤ä¸ªå¼ä»£è¡¨çæ¯ç®æ ç³»ç»åå¹³å°ï¼èä¸æ¯ç¼è¯æºä»£ç çç³»ç»åå¹³å°ãæ èæ´¾çRaspBianæ¯linuxç³»ç»ï¼æ以è¿äºGOOS设置为linuxï¼GOARCH设置为armã
3.3 GOARM
表示使ç¨çæµ®ç¹è¿ç®åå¤çå¨çæ¬å·ï¼åªå¯¹armå¹³å°æç¨ï¼å¯éå¼æ5ï¼6ï¼7ãå¦ææ¯å¨ç®æ å¹³å°ä¸ç¼è¯æºä»£ç ï¼è¿ä¸ªå¼å¯ä»¥ä¸è®¾ç½®ï¼å®ä¼èªå¨å¤æéè¦ä½¿ç¨åªä¸ä¸ªçæ¬ã
æ»ç»ä¸æ¥ï¼å¨æ èæ´¾ä¸è®¾ç½®golangçç¼è¯ç¯å¢åéï¼å¯ç¼è¾$HOME/.bashrcæ件ï¼å¨æ«å°¾æ·»å ä¸é¢å 容ï¼
export GOROOT=ä½ çgoç®å½è·¯å¾
export GOOS=linux
export GOARCH=arm
ç¼è¾å®åä¿åï¼æ§è¡source ~/.bashrcå½ä»¤è®©ä¿®æ¹çæã
4ãç¼è¯æºä»£ç
ç¯å¢åéé ç½®å®æèªåå°±å¯ä»¥å¼å§ç¼è¯æºä»£ç ãå¨goç®å½ä¸çsrcåç®å½ä¸ï¼ä¸»è¦æall.bashåmake.bash两个èæ¬ï¼å¦å¤è¿æ两个all.batåmake.batèæ¬éç¨äºwindowå¹³å°ï¼ãç¼è¯å®é ä¸å°±æ¯æ§è¡å ¶ä¸ä¸ä¸ªèæ¬ï¼ä¸¤è çåºå«å¨äºall.bashå¨ç¼è¯å®æåè¿ä¼æ§è¡ä¸äºæµè¯å¥ä»¶ãå¦æå¸æåªç¼è¯ä¸æµè¯ï¼å¯ä»¥è¿è¡make.bashèæ¬ã使ç¨cdå½ä»¤è¿å ¥goä¸srcç®å½ï¼æ§è¡./all.bashæè ./make.bashå½ä»¤å³å¯å¼å§ç¼è¯ãç±äºç¡¬ä»¶æ åµä¸åï¼ç¼è¯èè´¹çæ¶é´ä¸åãå¨æçBåæ èæ´¾ç¼è¯è¿ç¨è±è´¹äºå°è¿å个å°æ¶ï¼ç¼è¯å®æåæ§è¡çæµè¯å¥ä»¶åè±è´¹äºå·®ä¸å¤ä¸ä¸ªå°æ¶ï¼æ»å ±è±è´¹äºä¸ä¸ªåå°æ¶å·¦å³ã
5ãé ç½®golangè¿è¡ç¯å¢åé
ç¼è¯å®æåï¼goç®å½ä¸ä¼çæbinç®å½ï¼éé¢å°±æ¯goçè¿è¡èæ¬ã为äºä»¥å使ç¨æ¹æ³ï¼å¯ä»¥å°è¿ä¸ªbinè·¯å¾æ·»å å°PATHç¯å¢åéä¸ãåæ ·ç¼è¾~/.bashrcæ件ï¼å 为åé¢è®¾ç½®è¿GOROOTç¯å¢åéæågoç®å½äºï¼æ以åªéè¦å¨æ«å°¾å ä¸
export PATH=$PATH:$GOROOT/bin
ä¿åååæ ·æ§è¡source ~/.bashrcå½ä»¤è®©ç¯å¢åéçæã
è³æ¤ï¼golangæºä»£ç ç¼è¯å®è£ æåãæ§è¡go versionåºè¯¥å°±è½çå°å½ågolangççæ¬ä¿¡æ¯ï¼è¡¨ç¤ºç¼è¯å®è£ æåã
golang源码系列---手把手带你看list实现
本文提供Golang源码中双向链表实现的详细解析。
双向链表结构包含头节点对象root和链表长度,无需遍历获取长度,链表节点额外设指针指向链表,方便信息获取。
创建双向链表使用`list.New`函数,初始化链表。
`Init`方法可初始化或清空链表,链表结构内含占位头结点。
`Len`方法返回链表长度,由结构体字段存储,无需遍历。
`Front`与`Back`分别获取头结点和尾结点。
`InsertBefore`与`InsertAfter`方法在指定节点前后插入新节点,底层调用`insertValue`实现。
`PushFront`与`PushBack`方法分别在链表头部和尾部插入新节点。
`MoveToBack`与`MoveToFront`内部调用`move`方法,将节点移动至特定位置。
`MoveBefore`与`MoveAfter`将节点移动至指定节点前后。
`PushBackList`与`PushFrontList`方法分别在链表尾部或头部插入其他链表节点。
例如,原始链表A1 - A2 - A3与链表B1 - B2 - B3,`PushFrontList`结果为B1 - B2 - B3 - A1 - A2 - A3,`PushBackList`结果为A1 - A2 - A3 - B1 - B2 - B3。
基于 Golang 实现的 Shadowsocks 源码解析
本教程旨在解析基于Golang实现的Shadowsocks源码,帮助大家理解如何通过Golang实现一个隧道代理转发工具。首先,让我们从代理和隧道的概念入手。
代理(Proxy)是一种网络服务,允许客户端通过它与服务器进行非直接连接。代理服务器在客户端与服务器之间充当中转站,可以提供隐私保护或安全防护。隧道(Tunnel)则是一种网络通讯协议,允许在不兼容网络之间传输数据或在不安全网络上创建安全路径。
实验环境要求搭建从本地到远程服务器的隧道代理,实现客户端访问远程内容。基本开发环境需包括目标网络架构。实验目的为搭建隧道代理,使客户端能够访问到指定远程服务器的内容。
Shadowsocks通过TCP隧道代理实现,涉及客户端和服务端关键代码分析。
客户端处理数据流时,监听本地代理地址,接收数据流并根据配置文件获取目的端IP,将此IP写入数据流中供服务端识别。
服务端接收请求,向目的地址发送流量。目的端IP通过特定函数解析,实现数据流的接收与识别。
数据流转发利用io.Copy()函数实现,阻塞式读取源流数据并复制至目标流。此过程可能引入阻塞问题,通过使用协程解决。
解析源码可学习到以下技术点:
1. 目的端IP写入数据流机制。
2. Golang中io.Copy()函数实现数据流转发。
3. 使用协程避免阻塞式函数影响程序运行效率。
4. sync.WaitGroup优化并行任务执行。
希望本文能为你的学习之旅提供指导,欢迎关注公众号获取更多技术分析内容。
golang chan 最详细原理剖析,全面源码分析!看完不可能不懂的!
大纲
概述
chan 是 golang 的核心结构,是与其他高级语言区别的显著特色之一,也是 goroutine 通信的关键要素。尽管广泛使用,但对其深入理解的人却不多。本文将从源码编译器的视角,全面剖析 channel 的用法。
channel 的本质
从实现角度来看,golang 的 channel 实质上是环形队列(ringbuffer)的实现。我们将 chan 称为管理结构,channel 中可以放置任何类型的对象,称为元素。
channel 的使用方法
我们从 channel 的使用方式入手,详细介绍 channel 的使用方法。
channel 的创建
创建 channel 时,用户通常有两种选择:创建带有缓冲区和不带缓冲区的 channel。这对应于 runtime/chan.go 文件中的 makechan 函数。
channel 入队
用户使用姿势:对应函数实现为 chansend,位于 runtime/chan.go 文件。
channel 出队
用户使用姿势:对应函数分别是 chanrecv1 和 chanrecv2,位于 runtime/chan.go 文件。
结合 select 语句
用户使用姿势:对应函数实现为 selectnbsend,位于 runtime/chan.go 文件中。
结合 for-range 语句
用户使用姿势:对应使用函数 chanrecv2,位于 runtime/chan.go 文件中。
源码解析
以上,我们通过宏观的用户使用姿势,了解了不同使用姿势对应的不同实现函数,接下来将详细分析这些函数的实现。
makechan 函数
负责 channel 的创建。在 go 程序中,当我们写类似 v := make(chan int) 的初始化语句时,就会调用不同类型对应的初始化函数,其中 channel 的初始化函数就是 makechen。
runtime.makechan
定义原型:
通过这个,我们可以了解到,声明创建一个 channel 实际上是得到了一个 hchan 的指针,因此 channel 的核心结构就是基于 hchan 实现的。
其中,t 参数指定元素类型,size 指定 channel 缓冲区槽位数量。如果是带缓冲区的 channel,那么 size 就是槽位数;如果没有指定,那么就是 0。
makechan 函数执行了以下两件事:
1. 参数校验:主要是越界或 limit 的校验。
2. 初始化 hchan:分为三种情况:
所以,我们看到除了 hchan 结构体本身的内存分配,该结构体初始化的关键在于四个字段:
hchan 结构
makechan 函数负责创建了 chan 的核心结构-hchan,接下来我们将详细分析 hchan 结构体本身。
在 makechan 中,初始化时实际上只初始化了四个核心字段:
我们使用 channel 时知道,channel 常常会因为两种情况而阻塞:1)投递时没有空间;2)取出时还没有元素。
从以上描述来看,就涉及到 goroutine 阻塞和 goroutine 唤醒,这个功能与 recvq,sendq 这两个字段有关。
waitq 类型实际上是一个双向列表的实现,与 linux 中的 LIST 实现非常相似。
chansend 函数
chansend 函数是在编译器解析到 c <- x 这样的代码时插入的,本质上就是把一个用户元素投递到 hchan 的 ringbuffer 中。chansend 调用时,一般用户会遇到两种情况:
接下来,我们看看 chansend 究竟做了什么。
当我们在 golang 中执行 c <- x 这样的代码,意图将一个元素投递到 channel 时,实际上调用的是 chansend 函数。这个函数分几个场景来处理,总结来说:
关于返回值:chansend 返回值标明元素是否成功入队,成功则返回 true,否则 false。
select 的提前揭秘:
golang 源代码经过编译会变成类似如下:
而 selectnbasend 只是一个代理:
小结:没错,chansend 功能就是这么简单,本质上就是一句话:将元素投递到 channel 中。
chanrecv 函数
对应的 golang 语句是 <- c。该函数实现了 channel 的元素出队功能。举个例子,编译对应一般如下:
golang 语句:
对应:
golang 语句(这次的区别在于是否有返回值):
对应:
编译器在遇到 <- c 和 v, ok := <- c 的语句时,会换成对应的 chanrecv1,chanrecv2 函数,这两个函数本质上都是一个简单的封装,元素出队的实现函数是 chanrecv,我们详细分析这个函数。
chanrecv 函数的返回值有两个值,selected,received,其中 selected 一般作为 select 结合的函数返回值,指明是否要进入 select-case 的代码分支,received 表明是否从队列中成功获取到元素,有几种情况:
selectnbsend 函数
该函数是 c <- v 结合到 select 时的函数,我们使用 select 的 case 里面如果是一个 chan 的表达式,那么编译器会转换成对应的 selectnbsend 函数,如下:
对应编译函数逻辑如下:
selectnbsend 本质上也就是个 chansend 的封装:
chansend 的内部逻辑上面已经详细说明过,唯一不同的就是 block 参数被赋值为 false,也就是说,在 ringbuffer 没有空间的情况下也不会阻塞,直接返回。划重点:chan 在这里不会切走执行权限。
selectnbrecv 函数
该函数是 v := <- c 结合到 select 时的函数,我们使用 select 的 case 里面如果是一个 chan 的表达式,那么编译器会转换成对应的 selectnbsrecv 函数,如下:
对应编译函数逻辑如下:
selectnbrecv 本质上也就是个 chanrecv 的封装:
chanrecv 的内部逻辑上面已经详细说明过,在 ringbuffer 没有元素的情况下也不会阻塞,直接返回。这里不会因此而切走调度权限。
selectnbrecv2 函数
该函数是 v, ok = <- c 结合到 select 时的函数,我们使用 select 的 case 里面如果是一个 chan 的表达式,那么编译器会转换成对应的 selectnbrecv2 函数,如下:
对应编译函数逻辑如下:
selectnbrecv2 本质上是个 chanrecv 的封装,只不过返回值不一样而已:
chanrecv 的内部逻辑上面已经详细说明过,在 ringbuffer 没有元素的情况下也不会阻塞,直接返回。这里不会因此而切走调度权限。selectnbrecv2 与 selectnbrecv 函数的不同之处在于还有一个 ok 参数指明是否获取到了元素。
chanrecv2 函数
chan 可以与 for-range 结合使用,编译器会识别这种语法。如下:
这个本质上是个 for 循环,我们知道 for 循环关键是拆分成三个部分:初始化、条件判断、条件递进。
那么在我们 for-range 和 chan 结合起来之后,这三个关键因素又是怎么理解的呢?简述如下:
init 初始化:无
condition 条件判断:
increment 条件递进:无
当编译器遇到上面 chan 结合 for-range 写法时,会转换成 chanrecv2 的函数调用。目的是从 channel 中出队元素,返回值为 received。首先看下 chanrecv2 的实现:
chan 结合 for-range 编译之后的伪代码如下:
划重点:从这个实现中,我们可以获取一个非常重要的信息,for-range 和 chan 的结束条件只有这个 chan 被 close 了,否则一直会处于这个死循环内部。为什么?注意看 chanrecv 接收的参数是 block=true,并且这个 for-range 是一个死循环,除非 chanrecv2 返回值为 false,才有可能跳出循环,而 chanrecv2 在 block=true 场景下返回值为 false 的唯一原因只有:这个 chan 是 close 状态。
总结
golang 的 chan 使用非常简单,这些简单的语法糖背后其实都是对应了相应的函数实现,这个翻译由编译器来完成。深入理解这些函数的实现,对于彻底理解 chan 的使用和限制条件是必不可少的。深入理解原理,知其然知其所以然,你才能随心所欲地使用 golang。