1.简析Kafka与ElasticSearch磁盘IO问题
2.TiKV 源码解析系列文章(十四)Coprocessor 概览
3.hbase特性有哪些
4.mimikatz源码分析-lsadump模块(注册表)
简析Kafka与ElasticSearch磁盘IO问题
针对Kafka和ElasticSearch磁盘IO问题,码分我们来深入探讨。码分首先,码分一个用户报告了Kafka磁盘IO突然饱和,码分尽管生产者和消费者的码分吞吐量稳定。问题可能出在(1)Kafka服务端生产消息的码分bias通信达源码过程,即顺序写入PageCache后异步刷新磁盘;(2)消费者长时间消费旧消息,码分但这通常不会导致突然的码分磁盘IO上升;(3)频繁创建或修改Topic时,会创建新日志段;(4)日志满后自动创建新段,码分rollJitterMs参数可能导致磁盘I/O压力;(5)过期数据的码分删除。经过源码分析,码分确认是码分由于日志段满而触发的创建新段操作。
对于ElasticSearch,码分一位群友遇到写入慢、码分读取磁盘满的码分问题。讨论中,焦点在于(1)负载均衡,即分片分布不均;(2)分片数量,可能过大导致读取瓶颈。磁盘I/O可能由(1)客户端写入、(2)大量读取、授权网源码2020(3)索引操作、(4)合并策略和(5)数据删除引起。内存与磁盘比例过低可能导致频繁交换,占用磁盘空间。
HBase的磁盘满问题,与ES类似,涉及写入、读取、Region创建和数据管理。HBase的MemStore和BlockCache缓存策略也可能影响磁盘I/O。总结来说,解决这类问题的关键在于理解系统的运行机制,监控指标,结合源码分析,合理调整配置,如调整分片数量、优化内存使用等。
TiKV 源码解析系列文章(十四)Coprocessor 概览
本文将简要介绍 TiKV Coprocessor 的基本原理。TiKV Coprocessor 是 TiDB 的一部分,用于在 TiKV 层处理读请求。怎么保护源码 java通过引入 Coprocessor,TiKV 可以在获取数据后进行计算,从而提高性能。
传统处理方式中,TiDB 向 TiKV 获取数据,然后在 TiDB 内部进行计算。而 Coprocessor 则允许 TiKV 进行计算,将计算结果直接返回给 TiDB,减少数据在系统内部的传输。
Coprocessor 的概念借鉴自 HBase,其主要功能是对读请求进行分类,处理包括 TableScan、IndexScan、Selection、Limit、TopN、Aggregation 等不同类型请求。其中,DAG 类请求是最复杂且常用的类型,本文将重点介绍。视频解析源码系统
DAG 请求是由一系列算子组成的有向无环图,这些算子在代码中称为 Executors。DAG 请求目前支持两种计算模型:火山模型和向量化模型。在当前的 TiKV master 上,这两种模型并存,但火山模型已被弃用,因此本文将重点介绍向量化计算模型。
向量化计算模型中,所有算子实现了 BatchExecutor 接口,其核心功能是 get_batch。算子类型包括 TableScan、IndexScan、Selection、Limit、TopN 和 Aggregation 等,它们之间可以任意组合。
以查询语句“select count(1) from t where age>”为例,展示了如何使用不同算子进行处理。本文仅提供 Coprocessor 的概要介绍,后续将深入分析该模块的空资金指标源码源码细节,并欢迎读者提出改进意见。
hbase特性有哪些
HBase的特性包括以下几个方面:高性能的数据写入
HBase具有非常强的数据写入性能。其基于LSM树结构,数据被随机地分布在整个集群的多个节点上,这使得数据写入时能够并行处理,大大提高了写入性能。同时,HBase支持大量的并发写入操作,使得它在大数据环境下表现优异。
灵活的表结构设计
HBase是一个非关系型的数据库,它的表结构非常灵活。每个表可以拥有多个列族,每个列族下的数据可以有不同的存储特性。这种灵活性使得HBase能够适应各种类型的数据存储需求,同时也方便了对数据的扩展和管理。
强大的可扩展性
HBase是基于Hadoop的分布式文件系统HDFS构建的,具有天然的分布式特性。通过增加节点的方式,HBase可以很容易地扩展其存储能力和处理能力。这使得HBase能够在处理海量数据的同时保持高性能。
快速的数据检索
虽然HBase是一个面向列的数据库,但它的查询性能同样出色。HBase支持高效的范围查询和基于列属性的查询,可以快速定位到特定的数据行。同时,由于数据的分布式存储和处理,即使在大量数据中查询,也能保持较高的效率。
高可用性
HBase支持集群部署,数据可以在多个节点上进行备份和复制。即使部分节点出现故障,也能保证数据的可用性和系统的稳定运行。这种高可用性使得HBase在大数据处理中非常可靠。而且由于其开放源代码的特性,任何开发者都可以对HBase进行开发和优化,使其更加适应各种应用场景的需求。
mimikatz源码分析-lsadump模块(注册表)
mimikatz是一款内网渗透中的强大工具,本文将深入分析其lsadump模块中的sam部分,探索如何从注册表获取用户哈希。
首先,简要了解一下Windows注册表hive文件的结构。hive文件结构类似于PE文件,包括文件头和多个节区,每个节区又有节区头和巢室。其中,巢箱由HBASE_BLOCK表示,巢室由BIN和CELL表示,整体结构被称为“储巢”。通过分析hive文件的结构图,可以更直观地理解其内部组织。
在解析过程中,需要关注的关键部分包括块的签名(regf)和节区的签名(hbin)。这些签名对于定位和解析注册表中的数据至关重要。
接下来,深入解析mimikatz的解析流程。在具备sam文件和system文件的情况下,主要分为以下步骤:获取注册表system的句柄、读取计算机名和解密密钥、获取注册表sam的句柄以及读取用户名和用户哈希。若无sam文件和system文件,mimikatz将直接通过官方API读取本地机器的注册表。
在mimikatz中,会定义几个关键结构体,包括用于标识操作的注册表对象和内容的结构体(PKULL_M_REGISTRY_HANDLE)以及注册表文件句柄结构体(HKULL_M_REGISTRY_HANDLE)。这些结构体包含了文件映射句柄、映射到调用进程地址空间的位置、巢箱的起始位置以及用于查找子键和子键值的键巢室。
在获取注册表“句柄”后,接下来的任务是获取计算机名和解密密钥。密钥位于HKLM\SYSTEM\ControlSet\Current\Control\LSA,通过查找键值,将其转换为四个字节的密钥数据。利用这个密钥数据,mimikatz能够解析出最终的密钥。
对于sam文件和system文件的操作,主要涉及文件映射到内存的过程,通过Windows API(CreateFileMapping和MapViewOfFile)实现。这些API使得mimikatz能够在不占用大量系统资源的情况下,方便地处理大文件。
在获取了注册表系统和sam的句柄后,mimikatz会进一步解析注册表以获取计算机名和密钥。对于密钥的获取,mimikatz通过遍历注册表项,定位到特定的键值,并通过转换宽字符为字节序列,最终组装出密钥数据。
接着,解析过程继续进行,获取用户名和用户哈希。在解析sam键时,mimikatz首先会获取SID,然后遍历HKLM\SAM\Domains\Account\Users,解析获取用户名及其对应的哈希。解析流程涉及多个步骤,包括定位samKey、获取用户名和用户哈希,以及使用samKey解密哈希数据。
对于samKey的获取,mimikatz需要解密加密的数据,使用syskey作为解密密钥。解密过程根据加密算法(rc4或aes)有所不同,但在最终阶段,mimikatz会调用系统函数对数据进行解密,从而获取用户哈希。
在完成用户哈希的解析后,mimikatz还提供了一个额外的功能:获取SupplementalCreds。这个功能可以解析并解密获取对应用户的SupplementalCredentials属性,包括明文密码及哈希值,为用户提供更全面的哈希信息。
综上所述,mimikatz通过解析注册表,实现了从系统中获取用户哈希的高效功能,为内网渗透提供了强大的工具支持。通过深入理解其解析流程和关键结构体的定义,可以更好地掌握如何利用mimikatz进行深入的安全分析和取证工作。