1.【干货|开源MIT Min cheetah机械狗设计(二十三)】运动控制器源码解析---控制和优化思想
2.干货|开源MIT Min cheetah机械狗设计(二十)运动控制器源码解析---Locomotion程序架构
3.干货|开源MIT Min cheetah机械狗设计(十四)运动控制器源码解析---四足机器人浮动基动力学模型创建
4.干货|开源MIT Min cheetah机械狗设计(二十一)运动控制器源码解析---刚体动力学建模
【干货|开源MIT Min cheetah机械狗设计(二十三)】运动控制器源码解析---控制和优化思想
本文将深入探讨开源MIT Min Cheetah机械狗设计的源码控制与优化策略,重点关注MPC控制和QP优化。狗源尽管WBC辅助MPC的源码内容在前文已有详述,这里主要聚焦控制理论的狗源应用。
控制的源码核心在于通过状态方程描述物体运动规律,如牛顿第二定律,狗源普拓源码将连续问题离散化以适应计算机处理。源码状态空间表达式,狗源如[公式],源码揭示了物理定律,狗源如位移与速度的源码关系和电容与电流的关系。控制策略的狗源优化在于选择最适合的路径,如LQR关注整个时间的源码最优,而MPC关注当前时刻对过去的狗源影响。
优化问题涉及代价函数和权重设置。源码LQR的今天中午吃什么源码代价函数[公式],权重为[公式],而MPC更复杂,如[公式],可加入不等式约束。MPC通过QP求解器,如Matlab或C++,实现开环优化,允许灵活设置约束条件。
与传统PID控制相比,现代控制理论如状态空间模型更精确,但在实际应用中,复杂项目如MIT机械狗,可能仍需依赖传统控制如PD,配合现代理论以提升性能。控制算法在无人机、在线课堂软件源码开发机器人和汽车行业广泛应用,尤其在动力学模型成熟的情况下。
机器学习和强化学习在参数辨识和环境适应方面提供了补充,但强化学习对于规则明确的环境表现较好,未来有望在机器人领域有更多发展。接下来,我们将转向机械狗的仿真实现,以及后续的扩展功能,如路径规划和激光雷达扫描。
干货|开源MIT Min cheetah机械狗设计(二十)运动控制器源码解析---Locomotion程序架构
开源MIT Min cheetah机械狗设计第篇,讲解Locomotion程序架构。
本文集中解析机械狗的运动模式,涵盖种模式,包括被动、关节运动、超级obv指标公式源码阻抗控制、站立、平衡站立、奔跑、恢复站立、视觉辅助、后空翻、前空翻。每种模式继承自FSM_State,实现状态转移与控制。
程序核心在于FSM_StatesList中的运动模式调度,runFSM()函数对模式进行管理。
重点介绍奔跑模式,它依赖MPC(ConvexMPCLocomotion)与WBC(WBC_Ctrl)控制器。MPC部分已前文讨论,打赏源码不用接口本篇聚焦于WBC实现。
首先,初始化MPC,作为WBC的一部分。WBC运行于FSM_State_Locomotion的run()函数,通过循环调用控制步骤LocomotionControlStep()。
控制步骤中,MPC预测足端反作用力Fr_des[i],WBC求解关节扭矩、加速度、速度与位置。腿部控制器LegController据此发送关节扭矩、速度与位置。
核心在于运行WBC控制器WBC_Ctrl::run()与计算过程的_WComputeWBC()函数,通过公式进行计算。
欲详细了解WBC控制器设计原理,可参考相关文章。
本篇至此,下篇将深入探讨WBC控制器的程序实现。
干货|开源MIT Min cheetah机械狗设计(十四)运动控制器源码解析---四足机器人浮动基动力学模型创建
干货MIT Min Cheetah机械狗设计详解(十四):动力学模型创建 对于机器人爱好者和初入机器人领域的专业人士,开源MIT Min Cheetah系列设计无疑是一份宝贵资源。本文将深入探讨RobotRunner核心模块,包括数据更新、步态规划、控制算法和命令发送,尤其是关键的浮动基动力学模型构建。 首先,我们从单刚体动力学模型开始,简化机械狗的复杂动态,计算足底反作用力,但此方法在高速运动时并不适用。为解决高速情况下的适应性,浮动基动力学模型引入,它在单刚体基础上优先满足动态响应,如WBC控制器的需要。模型创建包括:浮动基动力学模型参数设置:定义机械狗整体的配置空间和关节自由度,引入6个表示身体浮动基的自由度。
广义惯量和空间惯量:每个连杆和关节电机的广义惯性张量(包括质量、质心位置和旋转惯量)是动力学计算的基础。
连杆位置向量:这些参数用于后续的运动旋量计算。
浮动基动力学模型:以拉格朗日单腿动力学为基础,考虑机械狗整体的运动状态和力矩映射。
动力学方程的构造:包括动力学方程组、约束方程和构型角度约束,以及外力和转矩的关系。
代码中,通过`forwardKinematics()`函数计算关节和连杆的空间变换,为求解质量矩阵、非惯性力矩阵和接触雅可比矩阵做准备。在冗余自由度的系统中,浮动基动力学模型与WBC结合,最终计算出关节的控制参数。 总结,浮动基动力学模型的创建是实现高精度控制的关键步骤,它为后续的动力学方程求解提供了关键参数。理解这些核心概念,将有助于深入理解四足机器人动态控制的奥秘。干货|开源MIT Min cheetah机械狗设计(二十一)运动控制器源码解析---刚体动力学建模
本篇内容深入探讨了开源MIT Min cheetah机械狗设计系列文章中的刚体动力学模型。刚体动力学模型是机械狗设计的核心,是麻省理工团队独立开发的动力学算法的重要基础。动力学算法的理论依据参考了Roy Featherstone的文章《Rigid Body Dynamics Algorithms》,该文章提出了一种新的六维运动空间和力空间,概念类似于运动旋量和力旋量。
商业动力学运算库如CoppeliaSim的Bullet 2.和单独的动力学求解库pinocchio、frost、drake等在机械狗设计中得到了广泛应用。机械狗设计所用的动力学算法设计思想包含牛顿欧拉方程、坐标系选取问题、六维运动空间等核心概念。牛顿欧拉方程是力学基础,描述了力与加速度和扭矩之间的关系,包括了定点和定轴转动的公式。坐标系的选择对动力学和运动学分析至关重要,不同坐标系的设计使计算变得更加高效。Pl¨ucker坐标系的引入实现了平动和转动的统一表示,简化了动力学方程,方便了后续程序的编写。
在六维运动空间中,刚体的速度和空间力被统一表示,使得动力学分析更加简洁。动力学模型编程中,动力学公式和运动学树的概念被整合进代码中,以方便处理和编程。文章最后指出,动力学知识的探讨还将继续,后续计划将增加视觉感知、激光雷达扫描等机械狗的智能功能,以提升其性能。
2024-12-23 01:54
2024-12-23 01:47
2024-12-23 01:08
2024-12-23 01:01
2024-12-23 00:50
2024-12-23 00:17
2024-12-23 00:10
2024-12-23 00:03